Unmanned Aircraft Systems (UAS) Technologies

NASA is involved in research that would greatly benefit from breakthroughs in UAS capabilities. Flight research of basic aerodynamics and advanced aero-vehicle concepts would be revolutionized with an ability of UAS teams to cooperate and interact while making real time decisions based upon sensor data with little human oversight. Commercial industry would likewise be revolutionized with such abilities.

There are multiple barriers that are restricting greater use and application of UAS technologies in NASA research and in civil aviation. These barriers include, but are not limited to, the lack of methods, architectures, and tools that enable:

- The verification, validation, and certification of complex and/or nondeterministic systems.
- High level machine perception, cognition, and decision-making.
- Inexpensive secure and reliable communications.

This solicitation is intended to break through these and other barriers with innovative and high-risk research.

The Integrated Aviation Systems Program’s work on UAS technology for the FY 2019 NASA SBIR solicitation is focused on breaking through barriers to enable greater use of UAS in NASA research and in civil aviation use. The following three research areas are the primary focus of this solicitation, but other closely related areas will also be considered for award. The primary research areas are:

- Verification, Validation, and Certification - New inexpensive methods of verification, validation, and certification need to be developed which enable application of complex systems to be certified for use in the National Airspace System (NAS). Proposed research could include novel hardware and software architectures that enable or circumvent traditional verification and validation requirements.
- Sensing, Perception, Cognition, and Decision Making - Technologies need to be developed that provide the ability of UAS to detect and extract internal and external information of the vehicle, transform the raw data
into abstract information that can be understood by machines or humans, and recognize patterns and make decisions based on the data and patterns.

- Inexpensive, Reliable, and Secure Communications - Inexpensive methods that ensure reliable and secure communications for increasingly interconnected and complex networks need to be developed that are immune from sophisticated cyber-physical attacks.

This subtopic is relevant to NASA Aeronautics Research Mission Directorate's Strategic Thrusts 5 and 6:

- UAS in the NAS
- Traveler
- ATM-X
- UTM

Phase I deliverables should include, but are not limited to:

- A final report clearly stating the technology challenge addressed, the state of the technology before the work was begun, the state of technology after the work was completed, the innovations that were made during the work period, the remaining barriers in the technology challenge, a plan to overcome the remaining barriers, and a plan to infuse the technology developments into UAS application.
- A technology demonstration in a simulation environment which clearly shows the benefits of the technology developed.
- A written plan to continue the technology development and/or to infuse the technology into the UAS market. This may be part of the final report.

Phase II deliverables should include, but are not limited to:

- A final report clearly stating the technology challenge addressed, the state of the technology before the work was begun, the state of technology after the work was completed, the innovations that were made during the work period, the remaining barriers in the technology challenge, a plan to overcome the remaining barriers, and a plan to infuse the technology developments into UAS application.
- A technology demonstration in a relevant flight environment which clearly shows the benefits of the technology developed. There should be evidence of infusing the technology into the UAS market or a clear written plan for near term infusion of the technology into the UAS market. This may be part of the final report.

The expected TRL for this project is 3 to 6.

References: