In order to assess the long-term effects of potential hazards and aging-related degradation of new and emerging material systems/fabrication techniques, NASA is performing research to anticipate aging and to predict its effects on the designs of future aircraft. To support this predictive capability, structural integrity analytical tools, lifeing methods, and material durability prediction tools are being developed. Physics-based and continuum-based models, computational methods, and validation techniques are needed to provide the basis for these higher level (e.g., design) tools. Proposals are sought that apply innovative methods, models and analytic tools to these specific applications:

- Improved structural analysis of complex metallic and composite airframe components through the use of novel multi-scale as well as global-local analytical codes. The methods used for these solutions need to detail the initiation and progression of damage to determine accurate estimates of residual life and or strength of complex airframe structures.

- Type II hot corrosion of turbine alloys is a product of molten salt exposure and is manifested by a localized pitting corrosion attack. Prolonged high temperature exposures of turbine disk alloys to sulfur-rich low temperature melting eutectic salts can lead to an onset of Type II hot corrosion attack causing serious degradation to the durability of the turbine components. Tools and models are needed to predict the onset and the rates of hot corrosion attack in these types of alloys.

- Simulation of the response to jet engine fan blade-out events of advanced composite fan case/containment structures in aged conditions, using relevant impact mechanics and structural system dynamics modeling techniques.

Technology innovations may take the form of tools, models, and algorithms.