Cryogenic cooling systems are often enabling technologies for cutting edge science from infrared imaging and spectroscopy to x-ray calorimetry. Improvements in cryogenic technologies enable further scientific advancement at lower cost, lower risk, reduced volume, and/or reduced mass. Lifetime, reliability, and power requirements of the cryogenic systems are critical performance concerns. Of interest are cryogenic technologies for cooling detectors for scientific instruments and sensors on advanced telescopes and observatories as well as on instruments for lunar and planetary exploration. Active coolers should have long life, low vibration, low mass, low cost, and high efficiency. Specific areas of interest include:

- Essentially vibration-free cooling systems such as reverse Brayton cycle cooler technologies with cooling capability of 20 mW at 4K.
- Highly efficient magnetic and dilution cooling technologies under 1 Kelvin.
- Components for advanced magnetic coolers (adiabatic demagnetization refrigerators) including:
 - Small (few cm bore), lightweight, low current (under 10A, goal under 5A) superconducting magnets capable of producing at least 3 Tesla central field while operating at least 10 Kelvin. Higher temperature superconductor (HTS) magnets operating at significantly higher temperatures are of particular interest.
 - Lightweight (relative to standard ferromagnetic flux guides) active and/or passive magnetic shielding for 3 to 4 Tesla magnets that reduces the stray field to tens of microTeslas at a distance of several cm from the outside of the shield.
 - Large (several cm) single crystals of magnetocaloric materials.
 - Superconducting current leads operating between 90 Kelvin down to 10 Kelvin, capable of carrying up to 10 amperes while allowing only approximately 1 mW of heat to be conducted.
 - Compact, accurate, easy to use thermometers that operate down to 10 milliKelvin.