NASA SBIR 2010 Phase I Solicitation

S5.05 Extreme Environments Technology

Lead Center: JPL

Participating Center(s): ARC, GRC, GSFC, MSFC

High Temperature, High Pressure, and Chemically Corrosive Environments

NASA is interested in expanding its ability to explore the deep atmosphere and surface of Venus through the use of long-lived (days or weeks) balloons and landers. Survivability in extreme high temperatures and high pressures is also required for deep atmospheric probes to giant planets. Proposals are sought for technologies that enable the in situ exploration of the surface and deep atmosphere of Venus and the deep atmospheres of Jupiter or Saturn for future NASA missions. Venus features a dense, CO₂ atmosphere completely covered by sulfuric acid clouds at about 55 km above the surface, a surface temperature of about 486 degrees Centigrade and a surface pressure of about 90 bars. Technologies of interest include high temperature and acid resistant high strength-to-weight textile materials for landing systems (balloons, parachutes, tethers, bridles, airbags), high temperature electronics components, high temperature energy storage systems, light mass refrigeration systems, high-temperature motors and actuators for robotic arms and other mechanisms, high temperature drills, phase change materials for short term thermal maintenance, low conductivity and high-compressive strength insulation materials, high temperature optical window systems (that are transparent in IR, visible and UV wavelengths) and advanced materials with high specific heat capacity and strength for pressure vessel construction, and pressure vessel components compatible with materials such as steal, titanium and beryllium such as low leak rate wide temperature (-50 degrees Centigrade C to 500 degrees Centigrade) seals capable of operating between 0 and 90 bars.

Low Temperature Environments

Low temperature survivability is required for surface missions to Titan (-180 degrees Centigrade), Europa surface (-220 degrees Centigrade), Ganymede (-200 degrees Centigrade) and comets. Also the Earth's Moon equatorial regions experience wide temperature swings from -180 degrees Centigrade to +130 degrees Centigrade during the lunar day/night cycle, and the sustained temperature at the shadowed regions of lunar poles can be as low as -230 degrees Centigrade. Mars diurnal temperature changes from about -120 degrees Centigrade to +20 degrees Centigrade. Also for the baseline concept for Europa Jupiter System Mission (EJSM), with a mission life of 10 years, the radiation environment is estimated at 2.9 Mega-rad total ionizing dose (TID) behind 100 mil thick aluminum. Proposals are sought for technologies that enable NASA's long duration missions to low temperature and wide temperature environments. Technologies of interests include low-temperature resistant high strength-weight textiles for landing systems (parachutes, air bags), low power radiation-tolerant /radiation hardened RF electronics, radiation-tolerant / radiation hardened mixed signal electronics, radiation-tolerant / radiation hardened power electronics, radiation-tolerant/ radiation hardened high speed fiber optic transceivers, radiation-tolerant/ radiation hardened electronic packaging (including, shielding, passives, connectors, wiring harness and materials used in advanced electronics assembly), actuators and energy storage sources capable of operating across an ultra-wide temperature range from -230 degrees Centigrade to 200 degrees Centigrade and Computer Aided...
Design (CAD) tools for modeling and predicting the electrical performance, reliability, and life cycle for low-temperature electronic systems and components.

Research should be conducted to demonstrate technical feasibility during Phase I and show a path toward a Phase II hardware/software demonstration, and when possible, deliver a demonstration unit for functional and environmental testing at the completion of the Phase II contract.