The purpose of the NASA Advanced Food Technology Project is to develop, evaluate and deliver food
technologies for human centered spacecraft that will support crews on long duration missions beyond low-Earth
orbit. Safe, nutritious, acceptable, and varied shelf-stable foods with a shelf life of 5 years will be required to
support the crew during these exploration missions. Concurrently, the food system must efficiently balance
appropriate vehicle resources such as mass, volume, water, air, waste, power, and crew time.

Refrigeration and freezing require significant vehicle resource utilization, so NASA provisions consist solely of shelf
stable foods. Stability is achieved by thermal or irradiative processing to kill the microorganisms in the food, or
drying to prevent viability of the microorganisms. These methods do impact the micronutrients within the food
substrate. Environmental factors (such as moisture ingress and oxidation) are also capable of compromising the
nutrient content over the shelf life of the food. Since the food system is the sole source of nutrition to the crew, a
significant loss in nutrient availability could significantly jeopardize the health and performance of the crew. Optimal
nutritional content of the food for five years will ensure that the food can support crew performance and help protect
their bodies from deficiencies that cause disease.

Vitamin content in NASA foods, such as vitamin C, vitamin A, thiamin, and folic acid, is degraded during processing
and as the product ages in storage. The goal is to develop a system that either increases the bioavailability of the
nutrients or protects the vitamins from this biological or chemical degradation at ambient temperatures over a five
year duration. Possible technologies that could be investigated include novel food ingredients, protective or
stabilizing technologies (e.g., encapsulation), biosensors, and controlled-release systems.

Phase I Requirements - Phase I should concentrate on the scientific, technical, and commercial merit and feasibility
of the proposed innovation resulting in a feasibility report and concept, complete with analyses.

NASA Deliverables - A system which will result in higher nutrient content in shelf stable foods.

HRP IRP risk - Risk of Inadequate Food System
Technology Readiness Levels (TRL) of 4 to 5 or higher are sought.

Potential NASA Customers include:

- Space Human Factors and Habitability Element in Human Research Program:
 - (http://www.nasa.gov/exploration/humanresearch/elements/research_info_element-shfh.html)