Robust systems for sample acquisition, handling and processing are critical to the next generation of robotic explorers for investigation of planetary bodies (http://books.nap.edu/openbook.php?record_id=10432&page=R1). Limited spacecraft resources (power, volume, mass, computational capabilities, and telemetry bandwidth) demand innovative, integrated sampling systems that can survive and operate in challenging environments (e.g., extremes in temperature, pressure, gravity, vibration and thermal cycling). Special interest lies in sampling systems and components (actuators, gearboxes, etc.) that are suitable for use in the extremely hot high-pressure environment at the Venusian surface (460ºC, 93 bar), as well as for asteroids and comets. Relevant systems could be integrated on multiple platforms, however of primary interest are samplers that could be mounted on a mobile platform, such as a rover. For reference, current Mars-relevant rovers range in mass from 200 - 800 kg.

**Sample Acquisition**

Research should be conducted to develop compact, low-power, lightweight subsurface sampling systems that can obtain 1 cm diameter cores of consolidated material (e.g., rock, icy regolith) up to 10 cm below the surface. Systems should be capable of autonomously acquiring and ejecting samples reliably, with minimal physical alteration of samples. Also of interest are methods of autonomously exposing rock interiors from below weathered rind layers. Other sample types of interest are unconsolidated regolith, dust, and atmospheric gas. Asteroid and comet samplers are also of interest.

**Sample Manipulation** (e.g., core management, sub-sampling/sorting, powder transport)

Sample manipulation technologies are needed to enable handling and transfer of structured and unstructured samples from a sampling device to instruments and sample processing systems. Core, cuttings, and regolith samples may be variable in size and composition, so a sample manipulation system needs to be flexible enough to handle the sample variability. Core samples will be on the order of 1 cm diameter and up to 10 cm long. Soil and rock fragment samples will be of similar volumes.

**Sample Integrity** (e.g., encapsulation and contamination control)

For a sample return mission, it is critical to find solutions for maintaining physical integrity of the sample during the surface mission (rover driving loads, diurnal temperature fluctuations) as well as the return to Earth (cruise, atmospheric entry and impact). Technologies are needed for characterizing state of sample in situ - physical
integrity (e.g., cracked, crushed), sample volume, mass or temperature, as well as retention of volatiles in solid (core, regolith) samples, and retention of atmospheric gas samples.

Also of particular need are means of acquiring subsurface rock and regolith samples with minimum contamination. This contamination may include contaminants in the sampling tool itself, material from one location contaminating samples collected at another location (sample cross-contamination), or Earth-source microorganisms brought to the Martian surface prior to drilling (‘clean’ sampling from a ‘dirty’ surface). Consideration should be given to use of materials and processes compatible with 110 - 125°C dry heat sterilization. In situ sterilization may be explored, as well as innovative mechanical or system solutions - e.g., single-use sample "sleeves," or fully-integrated sample acquisition and encapsulation systems.

For a sample return mission, solutions are sought for sample transfer of a payload into a planetary ascent vehicle including automated payload transfer mechanisms and Orbiting Sample (OS) sealing techniques.

Sample Return Facility capabilities

Technologies are needed for terrestrial handling of returned samples, including sample quarantine, biological activity and biohazard assessment, techniques for performing sample science.

Proposals should show an understanding of one or more relevant science needs, and present a feasible plan to fully develop a technology and infuse it into a NASA program. Technical feasibility should be demonstrated during Phase I and a full capability unit of at least TRL 4 should be delivered in Phase II.