The purpose of the Advanced Food Technology Project is to develop, evaluate and deliver food technologies for human centered spacecraft that will support crews on missions to the Moon, Mars, and beyond. Safe, nutritious, acceptable, and varied shelf-stable foods with a shelf life of 3 - 5 years will be required to support the crew during future exploration missions to the Moon or Mars. Concurrently, the food system must efficiently balance appropriate vehicle resources such as mass, volume, water, air, waste, power, and crew time. One of the objectives during the lunar outpost missions is to test technologies that can be used during the Mars missions.

This subtopic will concentrate on two specific areas; food packaging and lunar outpost food preparation and food processing.

Non-Foil High Barrier Materials

Development of shelf-stable food items that use high-quality ingredients is important to maintaining a healthy diet and the psychosocial well being of the crew. Shelf-life extension may be attained through new food preservation methods and/or packaging. New food packaging technologies are needed that have adequate oxygen and water barrier properties to maintain the foods' quality over a 3 - 5 year shelf life. The packaging must also minimize waste by using high barrier packaging with less mass and volume.

The current flexible pouch packaging used for the thermostabilized and irradiated food items contains a layer of foil. Although the foil provides excellent oxygen and water barrier properties, it also contributes to added waste. Food packaging will be a major contributor to the trash on the lunar or Mars surface. One of the proposed methods to dispose of trash on the lunar or Mars surface is incineration. However, the foil layer will not incinerate completely and there will be ash formed.
Two emerging food preservation technologies, high pressure processing and microwave processing, are being considered for future NASA missions. However, the current high barrier packaging material cannot be used for these processes. The material delaminates during high pressure processing and cannot be used in microwave processing. Hence, any food packaging material developed in response to this subtopic should be compatible with one or more of the following food preservation technologies - retort processing, microwave processing, and/or high pressure processing. In addition, the material should have an oxygen transmission rate that shall not exceed 0.06 cc/m2/24 hrs/atm and a water vapor transmission rate that shall not exceed 0.01 gm/m2/24 hrs as stated in the MIL-PRF 33073F specification.

Effect of Partial Gravity and Reduced Atmospheric Pressure

It will require approximately 10,000 kg of packaged food for a 6-crew, 1000 day mission to Mars. For that reason, it has been proposed to use a food system which incorporates processing of raw ingredients into edible ingredients and uses these edible ingredients in recipes in the galley to produce meals. This type of food system will require food processing and food preparation equipment. The equipment should be miniaturized, multipurpose and efficiently use vehicle resources such as mass, volume, water, and power. Food preparation may include gourmet kitchen appliances such as food processors or bread makers in addition to the standard stove and oven. Proposed food processing equipment may include a mill to produce wheat and soy flour, a soy milk/tofu processor, and a concentrator.

The Moon’s gravity is 1/6 of Earth’s gravity. In addition, it is being proposed that the habitat will have a reduced atmospheric pressure of 8 psia which is equivalent to a 16,000 foot mountain top. These two factors will affect the heat and mass transfer during food processing and food preparation of the food. Heat transfer is required for proper microbial kill and to produce the desired texture and appearance of the food prior to consumption. At this pressure, the boiling temperature of water will be 181°F which has significant implications for preventing microbial contamination and to acceptable food quality.

Prior to any design of food processing or preparation equipment, the effects of partial gravity and partial atmospheric pressure as it relates to fluid management, heat and mass transfer and chemical reactions must be determined. Once the effects are determined, countermeasures must be developed. All of this needs to happen prior to any fabrication of actual food processing or food preparation equipment that can be used in the Lunar Habitat.

The response to this subtopic should (1) develop food packaging technologies that respond to the above requirements, (2) develop a technology which will aid in determining the effects of reduced cabin pressure and reduced gravity and/or (3) develop a technology that will enable safe and timely food processing and food preparation in reduced cabin pressure and reduced gravity.