The objective of fire protection strategies on exploration spacecraft is to quantitatively reduce the likelihood of a fire and reduce the impact to the mission should a fire occur. NASA's fire protection strategy includes: strict control of ignition sources and flammable material, early detection and annunciation of fire signatures, and effective fire suppression and response procedures. While proposals describing innovations in all of these areas are applicable, they are particularly sought in the following areas:

- Advanced fire detection strategies are desired that respond uniquely to one or more fire or pre-fire characteristics such as thermal radiation, smoke, or gaseous product. These sensors and detector systems should be appropriate for the unique fire behavior in low- and partial-gravity environments yet effectively discriminate between fire signatures and relevant spacecraft nuisance sources. Fire detection systems particularly attractive for long-duration exploration missions will have reduced mass, power, and volume requirements and exhibit high degrees of reliability, minimal maintenance, and self-calibration.

- Fire suppression technologies for exploration spacecraft and habitats must be applicable for use in a confined habitable volume having an atmosphere of up to 34% \(\text{O}_2 \) by volume and pressures as low as 7.6 psia. These systems would be effective in low- and partial-gravity environments and have minimal mass and volume requirements. Applicable technologies would be highly reliable with little or no maintenance, have multi-use capability and/or be replenishable during a mission, and be compatible with the spacecraft environmental control and life support system.

Results of a Phase 1 contract should show feasibility of the technology and approach. A plan for the demonstration of a prototype to be developed in Phase 2 should also be produced at the end of Phase 1. The Phase 2 contract should produce at least a prototype demonstration and test of the fire detection or suppression system.