Living and functioning efficiently and safely in space and in the hypogravity of the Moon (1/6g) or Mars (3/8g),
requires an understanding of the effects of micro- and hypogravity and other space-environment related factors on
human physiology responses and adaptations to a unique set of imposed demands. As a result, a variety of
countermeasures are needed to mitigate the deleterious changes that occur during space flight and upon
subsequent exposure to reduced-gravitational environments. The ability to monitor the effectiveness of
countermeasures and alterations in human physiology during space exploration missions, particularly when several
countermeasures are used concurrently, is equally important.

This subtopic seeks innovative technologies in several very specific key areas. As launch costs relate directly to
mass and volume, instruments and sensors must be small and lightweight with an emphasis on multi-functional
capabilities. Low power consumption is a major factor, as are design enhancements to improve the operation,
design reliability, and maintainability of these instruments in the environment of space and on planetary surfaces.
As the efficient use of time is extremely important, innovative instrumentation setup, ease of usage, improved
astronaut (patient) comfort, noninvasive sensors, and easy-to-read information displays are also very important
considerations. Extended shelf-life and ambient storage conditions of consumables are also key necessities. Ability
to operate in 0g, 1/6g, and 3/8g become more important as we march towards human Moon and Mars missions.

Exercise and Related Hardware

Minaturized exercise hardware (treadmill or resistance exercise); physiological monitoring devices; and metabolic
gas (carbon dioxide, oxygen) analysis systems for use with exercise and miniaturized interactive feedback and
entertainment systems. A tool or toolkit should simulate and visualize the exercise device design and performance.
A comprehensive, scaled 3D/virtual human model interface would be valuable to show biomechanical and kinetic
effects of the exercise device. Relative physiological data from anthropometry to stress/fatigue to trauma/insult
onset should be targeted.

Noninvasive Pharmacotherapy and Monitoring

Development of innovative technologies resulting in noninvasive methods for diagnosis, treatment, and therapeutic
drug monitoring is needed to facilitate effective pharmacotherapy of humans in space. Many questions remain
about the effectiveness of pharmaceuticals in micro- and hypogravity environments, which may interfere with their
activity by sensitizing or desensitizing the crew member or interfering in other ways with the desired physiological effect. Micro-encapsulation of drugs and development of novel drug delivery systems under micro- and hypogravity conditions. Devices for continual monitoring of physiology during pharmacotherapy would also be advantageous to ensure that on-orbit expression of therapies relates to on-earth histories.

Instrumentation for Noninvasive Measurement of Intracranial Pressure During Space Flight

Abrupt transitions between differing gravitational environments have profound physiologic impacts on human space travelers. For instance, immediately following insertion of the spacecraft into Earth orbit, cephalad fluid shifting occurs. Over the next several days, all crewmembers onboard suffer from what has been termed Space Adaptation Syndrome (SAS) that varies in severity from person to person. The prevailing theory for the appearance of the constellation of symptoms (headache, malaise, vomiting, vertigo, etc.) which comprise this syndrome implicates a "sensory conflict" in information provided by the adapting vestibular system and by visual inputs. Another theory implicates the increased intracranial pressure (ICP) that likely accompanies the cephalad fluid shifts in the genesis of SAS. Additionally, decreased ICP following return to Earth's gravity may explain symptoms experienced by many crewmembers. Thus, novel approaches to noninvasive measurement of ICP are needed to determine the etiology and pathogenesis of the untoward physiologic effects that plague human space travelers during abrupt transitions between different gravitational environments. A more complete understanding of these phenomena will lead to better prevention and treatment modalities that will in turn decrease risks to the health and performance of crewmembers during transitional periods of both high to low and low to high gravity environments.

Noninvasive Technology to Assess Bone Micro- and Macroarchitecture

A complete assessment of bone strength will better monitor life-time skeletal integrity and will generate data critical for developing probability fracture risk models in younger crew members. Novel technology for non-invasive assessments of "bone quality" indices such as microarchitecture, macroarchitecture and trabecular bone mineral density (BMD).