NASA SBIR 2006 Phase I Solicitation

S3.02 Proximity Glare Suppression for Characterization of Faint Astrophysical Objects

Lead Center: JPL

This subtopic addresses the unique problem of imaging and spectroscopic characterization of faint astrophysical objects that are located within the obscuring glare of much brighter stellar sources and innovative advanced wavefront sensing and control for cost-effective space telescopes. Examples include: planetary systems beyond our own, the detailed inner structure of galaxies with very bright nuclei, binary star formation, and stellar evolution. Contrast ratios of one million to ten billion over an angular spatial scale of 0.05-1.5 arcsec are typical of these objects. Achieving a very low background requires control of both scattered and diffracted light. The failure to control either amplitude or phase fluctuations in the optical train severely reduces the effectiveness of starlight cancellation schemes.

This innovative research focuses on advances in coronagraphic instruments, starlight cancellation instruments, and potential occulting technologies that operate at visible and infrared wavelengths. The ultimate application of these instruments is to operate in space as part of a future observatory mission. Much of the scientific instrumentation used in future NASA observatories for the astrophysical sciences will require control of unwanted radiation (thermal and scattered) across a modest field of view. The performance and observing efficiency of astrophysics instruments, however, must be greatly enhanced. The instrument components are expected to offer much higher optical throughput, larger fields of view, and better detector performance. The wavelengths of primary interest extend from the visible to the thermal infrared. Measurement techniques include imaging, photometry, spectroscopy, and polarimetry. There is interest in component development, and innovative instrument design, as well as in the fabrication of subsystem devices to include, but are not limited to, the following areas:

Starlight Suppression Technologies

- Advanced starlight canceling coronagraphic instrument concepts;
- Advanced aperture apodization and aperture shaping techniques;
- Pupil plane masks for interferometry;
- Advanced apodization mask or occulting spot fabrication technology controlling smooth density gradients to 10^{-4} with spatial resolutions ~1 µm;
- Metrology for detailed evaluation of compact, deep density apodizing masks, Lyot stops, and other types of graded and binary mask elements. Development of a system to measure spatial optical density, phase
inhomogeneity, scattering, spectral dispersion, thermal variations, and to otherwise estimate the accuracy of masks and stops is needed;

- Interferometric starlight cancellation instruments and techniques to include aperture synthesis and single input beam combination strategies;

- Fiber optic spatial filter development for visible coronagraph wavelengths;

- Single mode fiber filtering from visible to 20 µm wavelength;

- Methods of polarization control and polarization apodization; and

- Components and methods to insure amplitude uniformity in both coronagraphs and interferometers, specifically materials, processes, and metrology to insure coating uniformity.

Wavefront Control Technologies

- Development of small stroke, high precision, deformable mirrors (DM) and associated driving electronics scalable to 104 or more actuators (both to further the state-of-the-art towards flight-like hardware and to explore novel concepts). Multiple DM technologies in various phases of development and processes are encouraged to ultimately improve the state-of-the-art in deformable mirror technology. Process improvements are needed to improve repeatability, yield, and performance precision of current devices;

- Adaptive optics actuators, integrated mirror/actuator programmable deformable mirror;

- Reliability and qualification of actuators and structures in deformable mirrors to eliminate or mitigate single actuator failures;

- Multiplexer development for electrical connection to deformable mirrors that has ultra-low power dissipation. The most promising DM technology may be sensitive to temperature, so developing a MUX that has very low thermal hot spots, and very uniform temperature performance will improve the control of the mirror surface;

- High precision wavefront error sensing and control techniques to improve and advance coronagraphic imaging performance; and

- Highly reflecting broadband coatings.