One of the approaches to achieve the NASA Fundamental Aeronautics Program goals is to solve the aeronautics challenges for a broad range of air vehicles with system-level optimization, assessment and technology integration. The needs to meet this approach can be defined by four general themes: (1) Design Environment Development, (2) Variable Fidelity, Physics-Based Design/Analysis Tools, (3) Technology Assessment and Integration, and (4) Evaluation of Advanced Concepts.

Current interdisciplinary design/analysis involves a multitude of tools not necessarily developed to work together, hindering their application to complete system design/analysis studies. Multi-fidelity, multi-disciplinary optimization frameworks, such as Numerical Propulsion System Simulation (NPSS), have been developed by NASA but have limited capabilities to simulate complete vehicle systems. Solicited topics are aligned with these four themes that will support this NASA research area.

(1) Design Environment Development
Technology development is needed to provide complex simulation and modeling capabilities where the computer science details are transparent to the engineer. A framework environment is needed to provide a seamless integration environment where the engineer need not be concerned with where or how particular codes within the system level simulation will be run. Interfaces and utilities to define, setup, verify, determine the appropriate resources, and launch the system simulation are also needed.

Research challenges include the engineering details needed to numerically zoom (i.e. numerical analysis at various levels of detail) between multi-fidelity components of the same discipline, as well as, multi-discipline components of the same fidelity. A major computer science challenge is developing boundary objects that will be reused in a wide variety of simulations.

Proposals will be considered that enable coupling differing disciplines, numerical zooming within a single discipline, deploying large simulations, and assembling and controlling secure or non-secure simulations.

(2) Variable Fidelity, Physics-Based Design/Analysis Tools
An integrated design process combines high-fidelity computational analyses from several disciplines with advanced numerical design procedures to simultaneously perform detailed Outer Mold Line (OML) shape optimization, structural sizing, active load alleviation control, multi-speed performance (e.g. low takeoff and landing speeds, but efficient transonic cruise), and/or other detailed-design tasks. Current practice still widely uses sequential, single-discipline optimization, at best coupling low-fidelity modeling of other relevant disciplines during the detailed design phase. Substantial performance improvements will be realized by developing closely integrated design procedures coupled with highest-fidelity analyses for use during detailed-design. Design procedures must enable rapid determination of sensitivities (gradients) of a design objective with respect to all design variables and constraints, choose search directions through design space without violating constraints, and make appropriate
changes to the vehicle shape (ideally both external OML shape and internal structural element size). Solicitations
are for integrated design optimization tools that find combinations of design variables from more than one discipline
and can vary synergistically to produce superior performance compared to the results of sequential, single-
discipline optimization or repeated cut-and-try analysis.

(3) Technology Assessment and Integration
Improved analysis capability of integrated airframe and propulsion systems would allow more efficient designs to
be created that would maximize efficiency and performance while minimizing both noise and emissions. Improved
integrated system modeling should allow designers to consider trade-offs between various design and operating
parameters to determine the optimum design for various classes of subsonic fixed wing aircraft ranging from
personal aircraft to large transports. The modeling would also be beneficial if it had enough fidelity to enable it to
analyze both conventional and unconventional systems. Current analysis tools capable of analyzing integrated
systems are based on simplified physical and semi-empirical models that are not fully capable of analyzing aircraft
and propulsion system parameters that would be required for new or unconventional systems.

Analyses tools are solicited that are capable of analyzing new and unconventional aircraft and propulsion
integrated systems. These include: (1) New combustor designs, alternate fuel operation, and the ability to estimate
all emissions, and (2) Noise source models (fan, jet, turbine, core and airframe components). Analyses tools that
are scalable, especially to small aircraft, are desired.

(4) Evaluation of Advanced Concepts
Conceptual design and analysis of unconventional vehicle concepts and technologies is needed for technology
portfolio investment planning, development of advanced concepts to provide technology pull, and independent
technical assessment of new concepts. This capability will enable "virtual expeditions through the design space" for
multi-mission trade studies and optimization. This will require an integrated variable fidelity concept design system.
The aerospace flight vehicle conceptual design phase is, in contrast to the succeeding preliminary and detail
design phases, the most important step in the product development sequence, because of its predefining function.
However, the conceptual design phase is the least well understood part of the entire flight vehicle design process,
owing to its high level of abstraction and associated risk, its multidisciplinary design complexity, its permanent
shortage of available design information, and its chronic time pressure to find solutions. Currently, the important
primary aerospace vehicle design decisions at the conceptual design level (e.g., overall configuration selection) are
still made using extremely simple analyses and heuristics. An integrated, variable fidelity system would have large
benefits. Higher fidelity tools enabling unconventional configurations to be addressed in the conceptual design
process are solicited.