NASA SBIR 2005 Phase I Solicitation

S6.04 Passive Microwave

Lead Center: GSFC

Proposals are sought for the development of innovative passive microwave technology in support of Earth System Science measurements of the Earth’s atmosphere and surface. These microwave radiometry technology innovations are intended for use in the frequency band from about 1 GHz to 1 THz. The key science goal is to increase our understanding of the interacting physical, chemical, and biological processes that form the complex Earth system. Atmospheric measurements of interest include climate and meteorological parameters— including temperature, water vapor, clouds, precipitation, and aerosols; air pollution; and chemical constituents such as ozone, NOX, and carbon monoxide. Earth surface measurements of interest include water, land, and ice surface temperatures, land surface moisture, snow coverage and water content, sea surface salinity and winds, and multi-spectral imaging.

Technology innovations are sought that will provide the needed concepts, components, subsystems, or complete systems that will improve these needed Earth System Science measurements. Technology innovations should address enhanced measurement capabilities such as improved spatial or temporal resolution, improved spectral resolution, or improved calibration accuracies. Technology innovations should provide reduced size, weight, power, improved reliability, and lower cost. The innovations should expand the capabilities of airborne systems (manned and unmanned) as well as next generation spaceborne systems. Highly innovative approaches that open new pathways are also an important element of competitive proposals under this solicitation.

Specific technology innovation areas include:

Electronics Technologies

- Imaging radiometers, receivers, or receiver arrays on a chip;
- Microwave and millimeter-wave frequency sources as an alternative to Gunn diode oscillators. Compact (100 mW), and low power consumption
- Wideband and ultra-wideband sensors with >15dB cross-pole isolation across the bandwidth;
- Low noise
- Undersampling, multibit, analog-to-digital converters with Multigigahertz RF input bandwidth, low power consumption, and associated digital signal processing logic circuit;
- Low power, lightweight microwave with DC power consumption of less than 2 W;
- Electronic design approaches and subsystems that can be incorporated into microwave radiometers to detect and suppress RFI within or near the reception band of the radiometer, thus insuring higher data quality;
• Innovative new designs for highly stable noise-diode or other electronic devices as additional reference sources for onboard calibration. Of particular interest are variable correlated noise sources for calibrating correlation-type receivers used in interferometric and polarimetric radiometers;

• Monolithic microwave integrated circuit (MMIC), low-noise amplifiers (LNA). Of particular interest are LNAs covering the frequency range of 165 to 193 GHz with low 1/f noise, and having a noise figure of 6.0 dB or better; and

• GPS receiver systems for application as bi-static altimeters and scatterometers.

Antenna Technologies

• Sensor elements with low mutual coupling allowing close spacing within large arrays;

• Large format, millimeter wave, focal plane array modules for large-aperture passive imaging applications; and

• Large aperture, deployable antenna concepts. Such large apertures can be real or synthetic. Of particular interest are highly compact launch configurations.

Calibration Technologies

• New technology calibration reference sources for microwave radiometers that provide greatly improved reference measurement accuracy. Of particular interest are high emissivity (near-black-body) surfaces for use as onboard calibration targets for microwave radiometers—which will significantly reduce the weight of aluminum core target designs, while reliably improving the uniformity and knowledge of the calibration target temperature; and

• New approaches, concepts, and techniques for microwave radiometer system calibration over or within the 1-300 GHz frequency band—which provide end-to-end calibration to better than 0.1K, including corrections for temperature changes and other potential sources of instrumental measurement drift and error.