In order to explore other planets or return to Earth, NASA requires various technologies to facilitate entry, descent and landing. This topic, at this time, is supported by two subtopics.
The first subtopic calls for the development, modeling, testing, and monitoring of ablative thermal protection materials, high char yield adhesives and/or systems that will support planetary entry. NASA has been developing new ablative materials, some based on a 3-D woven reinforcement, either dry woven or impregnated, and some based on felt reinforcements. In order to develop heatshield systems from these materials, joining techniques are required. As new materials are developed, improved analytical tools are required to more accurately predict material properties and thermal response in entry conditions. Light weight, low power instrumentation systems for measuring the actual surface heating, in-depth temperatures, surface recession rates during testing and/or flight are required to verify the response of the materials and to monitor the health of flight hardware.
The second subtopic calls for the development of improved diagnostics for ground test facilities providing hypervelocity flows. As we try to understand the effects of hypersonic flow fields on entry vehicles, ground testing is often used to compare test data to predicted values. Improvements in diagnostic measurements in facilities such as NASA’s high enthalpy facilities, which include the Electric Arc Shock Tube (EAST), Arc Jets, Ballistic Range, Hypersonic Materials Environmental Test System (HyMETS), and 8’ High Temperature Tunnel (HTT) could provide data that will be used to validate and/or calibrate predictive modeling tools which are used to design and margin EDL requirements. This will reduce uncertainty in future mission planning.