STTR Phase II Solicitation   Abstract Archives

NASA STTR 2017-II Solicitation


PROPOSAL NUMBER:
 17-2- T12.03-9971
PHASE 1 CONTRACT NUMBER:
 NNX17CL52P
SUBTOPIC TITLE:
 Thin-Ply Composites Design Technology and Applications
PROPOSAL TITLE:
 Design and Process Development of Thin-Ply Composites
SMALL BUSINESS CONCERN (SBC):
RESEARCH INSTITUTION (RI):
Name:   Composites Automation, LLC
Name:   University of Delaware
Street:  9 Adelaide Court
Street:  210 - B Hullihen Hall
City:   Newark
City:   Newark
State/Zip:  DE  19702-2068
State/Zip:   DE 19716 - 0099
Phone:  (302) 584-4184
Phone:   (302) 831-8626


Principal Investigator (Name, E-mail, Mail Address, City/State/Zip, Phone)
Dr. Roger Crane
crane@compositesautomationllc.com
9 Adelaide Court Newark, DE 19702 - 2068
(410) 562-2163

Business Official (Name, E-mail, Mail Address, City/State/Zip, Phone)
Dirk Heider
heider@compositesautomationllc.com
9 Adelaide Court Newark, DE 19702 - 2068
(302) 831-8898
Estimated Technology Readiness Level (TRL) :
Begin: 4
End: 6
Technical Abstract

Composites Automation LLC (CA), our academic partner University of Delaware – Center for Composite Materials (UD-CCM) are teaming up in this STTR Phase II project to evaluate automated tape placement (ATP) processing of thin-ply composites, including material and process development, creation of a modeling foundation capturing thin-ply placement, test panel fabrication and mechanical performance evaluation. Keys to successful transition of standard ply to thin-ply ATP processing, is the ability to fabricate uniform high fiber volume and fiber distribution composite parts at or below 1% void content

Phase II will investigate other material options beyond the North Thin Ply Technology (NTPT) material investigated in Phase I, evaluate their microstructure and down-select for further investigation. Our ATP robotic system will be reconfigured to include a material handling system that eliminates tape geometry changes during placement of thin-ply material. A key innovation will be the development of a comprehensive modeling approach capturing the complete placement, debulking and autoclave cure process for thin-ply material addressing the critical challenges found in Phase I. This will allow definition of material requirements and optimization of the placement conditions such as speed and head pressure for any thin ply material, recommend the number of debulking steps for thicker geometry parts and provide cure cycle guidance in particular for complex geometry components. The comprehensive software will evaluate the sensitivity of incoming tape material quality on production rate and performance, and enable a virtual modeling environment for thin-ply material. We will demonstrate the approach by building and testing standard coupons as well as complex geometry components to validate and transition the technology to NASA.

Potential NASA Applications

NASA has shown interest in applying thin-ply technology in various programs including the Composite Cryotank Technologies and Demonstration (CCTD) project. The Boeing Company was contracted to design, analyze, and manufacture the large composite cryotanks for testing at NASA Marshall Space Flight Center. An automated placement system was utilized to place thick and thin prepreg plies with final consolidation using out-of-autoclave processing (OOA). The approach has the potential to reduce cost by 25% and weight by 30 percent compared to existing aluminum-lithium propellant tanks. Other applications where weight reduction and improved durability is key are currently being considered by NASA.

Potential Non-NASA Applications

The general approach and specific technologies developed in this SBIR can be applied to other military and commercial applications (aerospace, automotive, wind etc.). These applications may require additional material testing and R&D to meet certifications and particular application requirements and will be evaluated on a market basis.


PROPOSAL NUMBER:
 17-2- T2.01-9960
PHASE 1 CONTRACT NUMBER:
 NNX17CC74P
SUBTOPIC TITLE:
 Advanced Nuclear Propulsion
PROPOSAL TITLE:
 Superconducting Coils for Small Nuclear Fusion Rocket Engines
SMALL BUSINESS CONCERN (SBC):
RESEARCH INSTITUTION (RI):
Name:   Princeton Satellite Systems
Name:   Princeton Plasma Physics Laboratory
Street:  6 Market Street, Suite 926
Street:  100 Stellarator rd
City:   Plainsboro
City:   Princeton
State/Zip:  NJ  08536-2096
State/Zip:   NJ 08540 - 6655
Phone:  (609) 279-9606
Phone:   (609) 243-3532


Principal Investigator (Name, E-mail, Mail Address, City/State/Zip, Phone)
Stephanie Thomas
sjthomas@psatellite.com
6 Market Street, Suite 926 Plainsboro, NJ 08536 - 2096
(609) 275-9606

Business Official (Name, E-mail, Mail Address, City/State/Zip, Phone)
Michael Paluszek
map@psatellite.com
6 Market Street, Suite 926 Plainsboro, NJ 08536 - 2096
(609) 275-9606
Estimated Technology Readiness Level (TRL) :
Begin: 2
End: 5
Technical Abstract

This proposal focuses on the superconducting coils subsystem, a critical subsystem for the PFRC reactor and Direct Fusion Drive and other fusion and electric propulsion technologies. Our strategy for PFRC has evolved since our Phase I proposal, and we now propose a hybrid magnet approach: a combination of so-called “dry” conduction-cooled low-temperature (LTS) superconductor magnets and high-temperature (HTS) magnets that are operated at low temperature for maximum current at high fields. Conduction-cooled LTS magnets are becoming state-of-the-art for MRI machines, and reduce coolant requirements from 1000’s of liters of helium over the lifetime of the machine to a few liters in a closed cryocooler. This is with a mass penalty for cooling of only about 5%. These low-coolant LTS magnets, producing a field of 5 to 6 T, will have excellent safety margin in both critical current and field and will have a clear path to space applications. PFRC also requires higher-field nozzle magnets producing fields of 20 to 30 T. These would utilize HTS superconductors operated at low temperatures of about 10 K. All coils will require highly efficient cooling systems, excellent mechanical support, and overall low mass including structural components. Our partner, PPPL, is the only institution in the world where active research on the physics and technology of small, steady-state fusion devices is being performed. We propose a Phase II experiment to build a 0.5 Tesla LTS magnet with a split pair of winding packs, to mimic a subset of the PFRC magnets. A separate pulsed copper test coil to simulation the plasma will be used to study the effects on the magnet of FRC formation, which will occur in a fraction of a second and result in large increases in magnetic field at the windings. In parallel, we will continue to advance the design of the HTS nozzle magnets, seeking the lowest mass solution.

Potential NASA Applications

A small fusion engine such as Direct Fusion Drive would be useful for many deep- and inner-space missions, such as Lagrange points, manned Mars and lunar missions, a Pluto orbiter and lander, and the 550 AU solar gravitational lens. The novel superconducting coils have applications to additional advanced propulsion concepts and scientific payloads. One example is the  AMS-02 experiment for which a low-temperature superconducting coil option was built and tested but later swapped out for a traditional magnet with a longer lifetime. Other advanced propulsion techniques require superconducting coils including the VASIMR electric thruster and the PuFF fission-fusion thruster. There has been considerable research on using superconducting coils for radiation shielding; these coils may also be useful for space materials processing and precision formation flying.

Potential Non-NASA Applications

There are many military and civil applications of the fusion engine and the coils. Military space applications include high-power Earth satellites with radar, laser, or communications payloads. There are wider applications including generators for wind turbines, high efficiency motors, particle accelerators, energy storage, and terrestrial fusion reactors. Small terrestrial fusion reactors of the PFRC type have unique application to remote and mobile applications, such as military forward power and disaster relief, as well as high-intensity energy applications like desalination. This project would contribute greatly to this wider body of work.


PROPOSAL NUMBER:
 17-2- T1.02-9954
PHASE 1 CONTRACT NUMBER:
 NNX17CM23P
SUBTOPIC TITLE:
 Detailed Multiphysics Propulsion Modeling & Simulation Through Coordinated Massively Parallel Frameworks
PROPOSAL TITLE:
 Multiphase Modeling of Solid Rocket Motor Internal Environment
SMALL BUSINESS CONCERN (SBC):
RESEARCH INSTITUTION (RI):
Name:   CFD Research Corporation
Name:   Mississippi State University
Street:  701 McMillian Way Northwest, Suite D
Street:  449 Hardy Rd, 129 Etheredge Hall
City:   Huntsville
City:   Mississippi State
State/Zip:  AL  35806-2923
State/Zip:   MS 39762 - 6156
Phone:  (256) 726-4800
Phone:   (662) 325-2346


Principal Investigator (Name, E-mail, Mail Address, City/State/Zip, Phone)
Manuel Gale
manuel.gale@cfdrc.com
701 McMillian Way Northwest, Suite D Huntsville, AL 35806 - 2923
(256) 726-4860

Business Official (Name, E-mail, Mail Address, City/State/Zip, Phone)
Silvia Harvey
silvia.harvey@cfdrc.com
701 McMillian Way Northwest, Suite D Huntsville, AL 35806 - 2923
(256) 726-4858
Estimated Technology Readiness Level (TRL) :
Begin: 3
End: 5
Technical Abstract

Solid rocket motor (SRM) design requires detailed understanding of the slag accumulation process in order to: predict thrust continuity, optimize propellant conversion efficiency, predict coning effects from sloshing, and to assess potential orbital debris (slag) hazard. Current state-of-the-art models for SRM environment do not have the capability to simulate the accumulation and dynamics of slag in SRMs as they rely on a Lagrangian particle approach that are only capable of predicting the location of accumulation. In Phase I, a multiphase framework comprising of gas-phase, a dense slag-phase, and Lagrangian particles representing aluminum and alumina was developed and demonstrated. Phase II effort will focus on extending the developed approach by a) incorporating improved transport and thermal properties of slag, b) improving numerical approach for solving transport of gas and slag-phase in SRM environment, c) enhancing the coupled flow simulation capabilities including accelerated frame of reference to predict slag dynamics and d) providing detailed verification and validation of sub-models and overall simulation capabilities. The tools developed will be of great use in designing and developing next generation SRMs and effect of slag on thrust oscillations, coning and debris prediction.

Potential NASA Applications

Prediction of slag accumulation during SRM operation, Analysis of slag accumulation effects on propellant conversion efficiency, Prediction of sloshing and the potential effects on SRM conning, Assessment of slag as a potential debris hazard, Support new SRM concept and trade studies analysis

Potential Non-NASA Applications

Military application: Prediction of SRM burnout and time at which slag poses as a potential hazard; prediction of thermal signatures associated with slag for both tactical and missile defense. Civilian Applications: Analysis of volcano eruptions and dispersion of hazardous lava; slosh predictions for ships and civil transport applications.


PROPOSAL NUMBER:
 17-2- T1.02-9953
PHASE 1 CONTRACT NUMBER:
 NNX17CM22P
SUBTOPIC TITLE:
 Detailed Multiphysics Propulsion Modeling & Simulation Through Coordinated Massively Parallel Frameworks
PROPOSAL TITLE:
 Transient Acoustic Environment Prediction Tool for Launch Vehicles in Motion During Early Lift-Off
SMALL BUSINESS CONCERN (SBC):
RESEARCH INSTITUTION (RI):
Name:   CFD Research Corporation
Name:   Mississippi State University
Street:  701 McMillian Way Northwest, Suite D
Street:  449 Hardy Rd, 129 Etheredge Hall
City:   Huntsville
City:   Mississippi State
State/Zip:  AL  35806-2923
State/Zip:   MS 39762 - 6156
Phone:  (256) 726-4800
Phone:   (662) 325-2346


Principal Investigator (Name, E-mail, Mail Address, City/State/Zip, Phone)
Robert Harris
reh@cfdrc.com
701 McMillian Way Northwest, Suite D Huntsville, AL 35806 - 2923
(256) 726-4800

Business Official (Name, E-mail, Mail Address, City/State/Zip, Phone)
Silvia Harvey
silvia.harvey@cfdrc.com
701 McMillian Way Northwest, Suite D Huntsville, AL 35806 - 2923
(256) 726-4858
Estimated Technology Readiness Level (TRL) :
Begin: 3
End: 6
Technical Abstract

Launch vehicles experience extreme acoustic loads dominated by rocket plume interactions with ground structures during liftoff, which can produce damaging vibro-acoustic loads on the vehicle and payloads if not properly understood and mitigated against. Existing capabilities for modeling turbulent plume physics are too dissipative to accurately resolve the acoustic propagation and detailed vehicle aft-end acoustics relevant to hydrogen pop deflagration and geometric attenuation. Higher fidelity analysis tools are critically needed to design mitigation measures (e.g. water deluge) and ground structures for current and future launch vehicles, and to accurately predict geometric attenuation which may allow significant reductions in SRB nozzle throat plug material density requirements. This project will significantly advance existing capabilities to develop breakthrough technologies to drastically improve transient acoustic loading predictions for launch vehicles in motion during liftoff. Innovative CFD/CAA techniques will be developed with RANS/LES modeling for acoustic generation and discontinuous Galerkin modeling for acoustic propagation and vehicle motion using ideally-suited high-order schemes. This technology enables: greatly reduced dissipation/dispersion; improved modeling of acoustic interactions with complex geometry; and automatic identification of transient acoustic environment including vehicle motion. A proof-of-concept was successfully demonstrated during Phase I for benchmark applications and SLS prototype launch environments. Phase II will deliver production transient CFD/CAA capabilities for launch vehicles in motion during liftoff with 4th-order accuracy for near-lossless acoustic modeling of near-field geometric attenuation and long-distance propagation, which will provide NASA with dramatic increases in the range of resolvable frequencies over current methods.

Potential NASA Applications
Potential Non-NASA Applications

PROPOSAL NUMBER:
 17-2- T6.01-9949
PHASE 1 CONTRACT NUMBER:
 NNX17CA30P
SUBTOPIC TITLE:
 Closed-Loop Living System for Deep-Space ECLSS with Immediate Applications for a Sustainable Planet
PROPOSAL TITLE:
 Next Generation Water Recovery for a Sustainable Closed Loop Living
SMALL BUSINESS CONCERN (SBC):
RESEARCH INSTITUTION (RI):
Name:   Faraday Technology, Inc.
Name:   University of Puerto Rico
Street:  315 Huls Drive
Street:  PO Box 21790
City:   Englewood
City:   San Juan
State/Zip:  OH  45315-8983
State/Zip:   PR 00931 - 1790
Phone:  (937) 837-7749
Phone:   (787) 764-0000


Principal Investigator (Name, E-mail, Mail Address, City/State/Zip, Phone)
Dr. Santosh Vijapur
santoshvijapur@faradaytechnology.com
315 Huls Drive Englewood, OH 45315 - 8983
(937) 836-7749

Business Official (Name, E-mail, Mail Address, City/State/Zip, Phone)
E. Jennings Taylor
jenningstaylor@faradaytechnology.com
315 Huls Drive Englewood, OH 45315 - 8983
(937) 836-7749
Estimated Technology Readiness Level (TRL) :
Begin: 2
End: 5
Technical Abstract

Among numerous technological advances sought in order to facilitate human space travel, innovations are needed that supports the mass- and energy-efficient maintenance of closed air, water, and waste systems in spacecraft habitats that operate on planetary environments such as Mars and within microgravity. Waste-water treatment system on board the ISS is one such system that has lifetime/durability limitations and would benefit from improvements. Therefore, in this Phase II STTR program Faraday will continue the technology development efforts of the Phase I by: (1) leveraging existing knowledge in the combined expertise of Faraday and UPR for device design and testing under zero gravity conditions; (2) exploring the bacteria for urea bioreactor and electrocatalyst for ammonia reactor tailored for zero gravity conditions of our subcontractor UPR, (3) optimizing the electrocatalytic efficiency and waste water treatment rate with on-board water simulates, (4) validating performance under zero gravity conditions; and (5) designing and building a demonstration-scale bio-electrochemical reactor unit capable of meeting NASA required specifications . This evaluation will enable TRL enhancement and demonstrate a potential path forward for Phase II scale-up and assessment of the bio-electrochemical system in zero-gravity environments. This technology has the potential to be an integral part of long term life support on NASA’s manned space missions.

Potential NASA Applications

The proposed technology will be used to treat waste-water onboard the ISS to enable improved durability and efficient reduction of contaminants that cause membrane fouling or performance degradation. We anticipate delivery of prototype units to NASA in Phase III for additional longer-term testing, including more extensive zero-gravity testing or experimentation onboard ISS. Once validation is complete and TRL 9 has been achieved, the bio-electrochemical units may be delivered to ISS via entities such as SpaceX and Orbital ATK. Upon successful implementation at ISS, this technology could be combined within the next generation ECLSS architectures and utilized on future man missions to Mars.

Potential Non-NASA Applications

The primary customer is NASA, but humanitarian initiative to improve water utilization and recovery could be an invaluable to the world’s population. Some potential installation/sales targets include naval warships and military field hospitals. In 2015 United Nations reported that more than 40% of global population is affected by water scarcity and this number continues to increase. For this reason, water recovery from waste water is essential to human race. The proposed innovation thus has the potential to be useful in regions where water is scarce commodity or water recovery would be invaluable. The proposed system is envisioned to be an add-on to existing osmosis technology that could reduce cost/maintenance of the osmotic components.


PROPOSAL NUMBER:
 17-2- T1.02-9942
PHASE 1 CONTRACT NUMBER:
 NNX17CS15P
SUBTOPIC TITLE:
 Detailed Multiphysics Propulsion Modeling & Simulation Through Coordinated Massively Parallel Frameworks
PROPOSAL TITLE:
 High Performance Simulation Tool for Multiphysics Propulsion Using Fidelity-Adaptive Combustion Modeling
SMALL BUSINESS CONCERN (SBC):
RESEARCH INSTITUTION (RI):
Name:   Streamline Numerics, Inc.
Name:   Stanford University
Street:  3221 North West 13th Street, Suite A
Street:  3160 Porter Drive Suite 100
City:   Gainesville
City:   Palo Alto
State/Zip:  FL  32609-2189
State/Zip:   CA 94304 - 8445
Phone:  (352) 271-8841
Phone:   (650) 736-7736


Principal Investigator (Name, E-mail, Mail Address, City/State/Zip, Phone)
Dr. Siddharth Thakur
st@snumerics.com
3221 North West 13th Street, Suite A Gainesville, FL 32609 - 2189
(352) 271-8841

Business Official (Name, E-mail, Mail Address, City/State/Zip, Phone)
Dr. Siddharth Thakur
st@snumerics.com
3221 North West 13th Street, Suite A Gainesville, FL 32609 - 2189
(352) 271-8841
Estimated Technology Readiness Level (TRL) :
Begin: 3
End: 5
Technical Abstract

The innovation proposed here is a Pareto-Efficient Combustion (PEC) model for fidelity-adaptive combustion modeling capability implemented into the Loci-STREAM CFD code for use at NASA for simulation of rocket combustion. This work will result in a high-fidelity, high-performance multiphysics simulation capability to enhance NASA’s current simulation capability of unsteady turbulent reacting flows involving cryogenic propellants.  The PEC model utilizes a combustion submodel assignment, combining flamelet-based combustion models (such as inert-mixing models, equilibrium chemistry, diffusion-flame Flamelet/Progress Variable (FPV) or premixed-flame models) for computationally efficient characterization of quasi one-dimensional, steady, and equilibrated combustion regimes, with combustion models of higher physical fidelity (such as thickened flame models, reduced/lumped chemistry models) for accurate representation of topologically complex combustion regions (associated with flame-anchoring, autoignition, flame-liftoff, thermoacoustic coupling, and non-equilibrium combustion processes) that are not adequately represented by flamelet models. In PEC, the selection of a combustion submodel from a set of models available to a CFD-combustion solver is based on user-specific information about quantities of interest and a local error control. With this information, the PEC model performs an identification procedure for an optimal combustion submodel assignment from the available combustion models that. This simulation capability will have direct impact on NASA’s ability to assess combustion instability of rocket engines.

Potential NASA Applications

(a)    High-fidelity simulations of unsteady turbulent reacting flows involving cryogenic propellants (LOX, LH2, LCH4, RP-1, etc.)
(b)    Simulation of H2 and CH4 flare stacks
(c)    Simulation of afterburning fuel-rich H2/RP-1/CH4 rocket exhaust plumes inside supersonic & subsonic rocket diffusers and flame acceleration 
(d)    LOX/GH2 multi-element combustor modeling    
(e)    Hot-hydrogen combustor design for total containment of Nuclear Thermal Propulsion testing
(f)     Design improvements for J-2X and RS-68 injectors to be used in the SLS
(g)    High-fidelity simulations of upper stage propulsion systems of SLS

Potential Non-NASA Applications

(a)    Fast and accurate simulation for a wide range of reacting flows in a variety of engineering applications.
(b)    Improved analysis of unsteady turbulent combusting flow fields in gas turbine engines, diesel engines, etc. leading to design improvements.
 


PROPOSAL NUMBER:
 17-2- T1.03-9934
PHASE 1 CONTRACT NUMBER:
 NNX17CK12P
SUBTOPIC TITLE:
 Real Time Launch Environment Modeling and Sensing Technologies
PROPOSAL TITLE:
 Launch Weather Decision Support System
SMALL BUSINESS CONCERN (SBC):
RESEARCH INSTITUTION (RI):
Name:   Radiometrics Corporation
Name:   University of Oklahoma-Norman Campus
Street:  4909 Nautilus Court North, #110
Street:  660 Parrington Oval
City:   Boulder
City:   Norman
State/Zip:  CO  80301-5414
State/Zip:   OK 73019 - 9705
Phone:  (303) 449-9192
Phone:   (405) 325-6140


Principal Investigator (Name, E-mail, Mail Address, City/State/Zip, Phone)
Dr. Randolph Ware
ware@radiometrics.com
4909 Nautilus Court North, #110 Boulder, CO 80301 - 5414
(303) 817-2063

Business Official (Name, E-mail, Mail Address, City/State/Zip, Phone)
Dick Rochester
d.rochester@radiometrics.com
4909 Nautilus Court North, #110 Boulder, CO 80301 - 5414
(303) 619-0368
Estimated Technology Readiness Level (TRL) :
Begin: 7
End: 8
Technical Abstract

NASA wants a cost-effective atmospheric remote sensing system providing accurate temperature and humidity profiles to least 10 km height in clear and cloudy conditions. Radiometrics Microwave Profiler (MP) products currently provide accurate temperature and humidity profiles in good agreement with radiosondes to 3 km height. Good agreement can be extended beyond 10 km height using variational retrieval methods that combine radiometer and model gridded analysis. Pressure profiles derived from MP variational retrievals and from radiosonde observations show good agreement to 10 km height.  

We propose to address this NASA remote sensing need by developing a robust, automated variational retrieval system providing radiosonde-equivalent temperature, humidity and pressure profiles to 20 km height at 150 m height intervals.

NASA also wants to improve lightning risk identification during cloudy conditions. Current Radiometrics MP products measure liquid water path (LWP), an important parameter for natural and triggered lightning risk Launch Commit Criteria (LCC). 

We propose to address this need by developing a robust, automated lightning risk identification algorithm using MP LWP data and stability indices derived from MP variational retrievals. In addition, we propose to automate demonstrated capability for lightning risk identification more than two hours in advance of traditional methods based on electric field measurements based on stability indices derived from MP observations.
 

Potential NASA Applications

The LWDSS atmospheric remote sensing system addresses weather-related launch complex operational challenges, providing continuous radiosonde-like temperature, humidity and pressure soundings, and liquid soundings. The system will also identify lightning risk hours in advance of traditional electric field mill methods. These features will improve launch operation safety and efficiency and will reduce the cost of access to space.

Potential Non-NASA Applications

A number of international airports are currently operating and evaluating Radiometrics SkyCastTM Total Profiling Solutions for airport weather decision support. An integrated wind and thermodynamic profiling system supporting airport weather applications is shown in operation at the Abu Dhabi International Airport in Figure 14. Meteo France is in discussion with RDX regarding implementation of a Launch Weather Decision Support System at the Arianne Launch Facility in French Guiana. The research and development supported by this NASA STTR will stimulate launch and airport weather decision support system commercialization. The RDX-CAPS team is developing and testing drone corridor weather decision support systems in collaboration with two companies  closely engaged with the Upstate New York UAV test bed and the New York State Mesonet.
 


PROPOSAL NUMBER:
 17-2- T11.02-9927
PHASE 1 CONTRACT NUMBER:
 NNX17CG37P
SUBTOPIC TITLE:
 Distributed Spacecraft Missions (DSM) Technology Framework
PROPOSAL TITLE:
 Optical Intersatellite Communications for CubeSat Swarms
SMALL BUSINESS CONCERN (SBC):
RESEARCH INSTITUTION (RI):
Name:   CrossTrac Engineering,Inc.
Name:   Massachusetts Institute of Technology
Street:  2730 Saint Giles Lane
Street:  77 Massachusetts Avenue
City:   Mountain View
City:   Cambridge
State/Zip:  CA  94040-4437
State/Zip:   MA 02139 - 4307
Phone:  (408) 898-0376
Phone:   (617) 253-3906


Principal Investigator (Name, E-mail, Mail Address, City/State/Zip, Phone)
Dr. John Hanson
john.hanson@crosstrac.com
2730 Street Giles Lane Mountain View, CA 94040 - 4437
(408) 898-0376

Business Official (Name, E-mail, Mail Address, City/State/Zip, Phone)
Dr. John Hanson
john.hanson@crosstrac.com
2730 Street Giles Lane Mountain View, CA 94040 - 4437
(408) 898-0376
Estimated Technology Readiness Level (TRL) :
Begin: 3
End: 5
Technical Abstract

.The growing interest in CubeSat swarm and constellation systems by NASA, the Department of Defense and commercial ventures has created a need for self-managed inter-satellite networks capable of handling large amount of data while simultaneously precisely synchronizing time and measuring the distances between the spacecraft. CrossTrac Engineering, Inc., in cooperation with our partners Professor Kerri Cahoy of the Massachusetts Institute of Technology and Mr. Paul Graven of Cateni, Inc., proposes to develop a free space optical communications and ranging system with inherent precision pointing as a 1U module for 3U and larger CubeSats requiring intersatellite crosslinks.  Based on technology developed by Professor Cahoy and her team at MIT, the module will enable small satellites to achieve the sub-milliradian pointing control of the optical beam necessary to close laser crosslinks at ranges from 200 km to 1000 km with input power of less than 20 W and data rates of 100 Mbps and greater, all within a 10 cm x 10 cm x 10 cm (1U) volume or smaller. The proposed work is directly aligned with the STTR solicitation T11.02 and the objectives of Technology Area 5.1 Optical Communications and Navigation in the NASA 2015 Technology Roadmap.  Optical crosslinks are a key technology that will enable new multi-spacecraft CubeSat and microsatellite missions.  These missions include large constellations for global data distribution and rapid response Earth imaging and asset tracking as well as swarm missions that, among other tasks, can be formed into sparse aperture systems providing unprecedented image resolution.  These swarm missions require precise relative position knowledge as well.  The optical terminal being developed under this effort will provide this sub-mm level relative position knowledge.  Furthermore, the free space optical crosslinks can be used to make atmospheric composition and thermophysical measurements (e.g., via laser occultation).

Potential NASA Applications

.The optical communications terminal and networking concept developed under this effort will provide new capabilities to small spacecraft operating in constellations and swarms, allowing them to transfer large amounts of data around the network while simultaneously synchronizing time across the swarm and measuring the positions of the spacecraft relative to one another.  This development will support NASA constellation and swarm missions, providing a high data rate network and precision metrology system.  Swarms of spacecraft, relying on the close coordination of action to perform a mission in unison that cannot be performed by a single spacecraft, can use this technology to explore Earth-Sun interaction by measuring spatial variations in electromagnetic fields; create bistatic and multistatic radar systems; and create large area sparse aperture imagers with unprecedented resolution, among other applications.  These swarm missions can be performed in environments from low Earth orbit to geosynchronous orbit as well around the moon other planetary bodies, near-Earth objects and comets comets.

Potential Non-NASA Applications

In many ways, commercial ventures have led the way in the development of capable CubeSat platforms and the exploitation of their capabilities to meet customer needs.  The optical terminal and related network will enhance the capabilities of existing imaging and asset tracking CubeSat constellations by providing a means to move large amounts of data through the constellation quickly, reducing data transfer latency and making more efficient use of ground stations.  Proposed constellations that intend to provide data services to customers throughout the world even in remote locations will require crosslinks to provide immediate connections between users and distributed ground stations.  Optical crosslinks will be necessary for these users to move the large amounts of data they produce.  Swarms of spacecraft, relying on the close coordination of action to perform a mission in unison that cannot be performed by a single spacecraft, can use this technology to create large sparse aperture imaging systems with unprecedented resolution, among other applications.  Similar missions are being explored by the Department of Defense and the National Reconnaissance Office..


PROPOSAL NUMBER:
 17-2- T15.01-9907
PHASE 1 CONTRACT NUMBER:
 NNX17CA22P
SUBTOPIC TITLE:
 Distributed Electric Propulsion Aircraft Research
PROPOSAL TITLE:
 Distributed Electric Propulsion Aircraft Comprehensive Analysis and Design Tool
SMALL BUSINESS CONCERN (SBC):
RESEARCH INSTITUTION (RI):
Name:   Continuum Dynamics, Inc.
Name:   Pennsylvania State University
Street:  34 Lexington Avenue
Street:  112 Hammond Building
City:   Ewing
City:   University Park
State/Zip:  NJ  08618-2302
State/Zip:   PA 16802 - 1400
Phone:  (609) 538-0444
Phone:   (814) 867-6241


Principal Investigator (Name, E-mail, Mail Address, City/State/Zip, Phone)
Mr. Daniel Wachspress
dan@continuum-dynamics.com
34 Lexington Avenue Ewing, NJ 08618 - 2302
(609) 538-0444

Business Official (Name, E-mail, Mail Address, City/State/Zip, Phone)
Ms. Barbara Agans
barbara@continuum-dynamics.com
34 Lexington Avenue Ewing, NJ 08618 - 2302
(609) 538-0444
Estimated Technology Readiness Level (TRL) :
Begin: 4
End: 7
Technical Abstract

A key goal of the current NASA ARMD Strategic Plan is to achieve Low Carbon Emissions through use of alternative propulsion systems such as electric/hybrid propulsion.  In this regard, NASA’s STTR solicitation seeks innovative approaches in designing and analyzing Distributed Electric Propulsion (DEP) aircraft to support ARMD’s Strategic Thrust #3 (Ultra-Efficient Commercial Vehicles) and #4 (Transition to Low-Carbon Propulsion).  Continuum Dynamics, Inc. (CDI) and The Pennsylvania State University (PSU) propose an STTR research effort that would address this need by developing DEP aircraft analysis tools able to accurately predict aerodynamic and aeroelastic performance, loads, stability, flight dynamics and acoustics in computational times commensurate with daily design work.  The proposed approach would leverage and enhance existing V/STOL aircraft analysis and flight simulation software with new capabilities that address current gaps in technology identified by NASA and developers of DEP aircraft who are working with CDI in the analysis and design of future air taxi concepts.  The new comprehensive DEP aircraft analysis will be built in a modular fashion, coupling flight simulation, aeromechanics, aeroelastic, acoustic, and power system components into both a stand-alone analysis and transportable software libraries easily coupled into alternate analyses and optimization tools.  In Phase II, this coupling will be performed with NASA’s NDARC aircraft design code, OpenVSP aircraft model generation tool and Open Multidisciplinary Design, Analysis and Optimization (OpenMDAO) platform.

Potential NASA Applications

The DEP aircraft analysis developed would directly support NASA’s ARMD Strategic Thrust #3 (Ultra-Efficient Commercial Vehicles) and #4 (Transition to Low-Carbon Propulsion) to achieve Low Carbon Emissions through use of electric/hybrid propulsion. The software would be used by NASA to investigate DEP aircraft (like SCEPTOR) and Urban Air Mobility concepts. The modular approach would allow implementation within NASA’s OpenMDAO optimization environment, a great benefit given the broad possibilities afforded by multiple distributed props.

Potential Non-NASA Applications

NASA and CDI are collaborating with aircraft manufacturers eager to see the new analysis capabilities required for modeling DEP aircraft developed and implemented for their use.  The new software will improve analysis capabilities for not only DEP aircraft but for all Future Vertical Lift aircraft, supporting major military and urban air mobility airframe development programs.


PROPOSAL NUMBER:
 17-2- T12.04-9880
PHASE 1 CONTRACT NUMBER:
 NNX17CL84P
SUBTOPIC TITLE:
 Experimental and Analytical Technologies for Additive Manufacturing
PROPOSAL TITLE:
 Integrated Computational Material Engineering Technologies for Additive Manufacturing
SMALL BUSINESS CONCERN (SBC):
RESEARCH INSTITUTION (RI):
Name:   QuesTek Innovations LLC
Name:   University of Pittsburgh-Pittsburgh Campus
Street:  1820 Ridge Avenue
Street:  151 Benedum Hall
City:   Evanston
City:   Pittsburgh
State/Zip:  IL  60201-3621
State/Zip:   PA 15260 - 0000
Phone:  (847) 328-5800
Phone:   (412) 624-9800


Principal Investigator (Name, E-mail, Mail Address, City/State/Zip, Phone)
Jiadong Gong
jgong@questek.com
1820 Ridge Avenue Evanston, IL 60201 - 3621
(847) 425-8221

Business Official (Name, E-mail, Mail Address, City/State/Zip, Phone)
Voula Colburn
vcolburn@questek.com
1820 Ridge Avenue Evanston, IL 60201 - 3621
(847) 425-8215
Estimated Technology Readiness Level (TRL) :
Begin: 2
End: 3
Technical Abstract

Additive manufacturing (AM) is a novel process of fabricating components in a layer-by-layer method under the control of computer-aided design (CAD) information rather than by the traditional casting methods. The transition of AM technology from production of prototypes to production of critical parts is hindered by a lack of confidence in the quality of the part. In the push to commercialize the AM technology, currently available systems are based largely on hand-tuned parameters determined by trial-and-error for a limited set of materials. QuesTek along with University of Pittsburgh as the partner will develop an integrated experimental and analytical (model-based) technologies for process optimization and qualification of additive manufacturing. In the Phase I of the program, modeling framework for yield strength of AM IN718 was developed and validated experimentally. Building on the success of Phase I and utilizing the already established framework, additional models for toughness, fatigue and cracking will be developed to perform an overall qualification of AM IN718. The developed Integrated Computational Materials Engineering (ICME) framework combines QuesTek’s Materials by Design and Accelerated Insertion of Materials (AIM) technologies to accelerate the adoption of AM.

Potential NASA Applications

The proposed innovation should enable faster adoption of additive manufacturing in various NASA missions. The increased mechanistic understanding of the process and the modeling of associated uncertainty within the process would result in accelerated qualification of AM materials for use especially in aerospace applications, where the qualification requirements are demanding. Due to the inherently material agnostic ICME approach, the developed methods and tools for IN718 in the current program can easily be expanded to other materials of interest, increasing its applicability in the industry. The current program would help in generation of a standard qualified metallurgical process for AM IN718 leading to the development of a Material Property Suite and helping in defining the design allowables and process control requirements.

Potential Non-NASA Applications

Beyond NASA, a software tool that will be developed under this program will integrate similarly into the existing AM supply chain, specifically with AM and materials researchers and producers, AM service bureaus who supply powders and components, major OEMs with AM capabilities, and other entities specifically involved with developing AM process prediction and modeling tools. The developed tools and methods can be used by OEMs (Original Equipment Manufacturers), where they can incorporate it in their work flow to reduce cost and time for qualification, reduce rejections by better process controls and understanding, thus adding great value. In the Phase II of the program, Honeywell Aerospace (attached letter of support) will provide valuable feedback for the development of the tool and how it can be can be applied to realistic aerospace applications. Apart from the aerospace industry, the developed tool can be applied to other industries like biomedical, automobile, power generation etc. too, where AM is also gaining traction. Overall the developed tool will enable the acceleration of AM technologies in general across industry segments.  


PROPOSAL NUMBER:
 17-2- T7.02-9876
PHASE 1 CONTRACT NUMBER:
 NNX17CK14P
SUBTOPIC TITLE:
 Space Exploration Plant Growth
PROPOSAL TITLE:
 uG-LilyPond - Floating Plant Pond for Microgravity
SMALL BUSINESS CONCERN (SBC):
RESEARCH INSTITUTION (RI):
Name:   Space Lab Technologies, LLC
Name:   Regents of the University of Colorado
Street:  P.O. Box 448
Street:  3100 Marine Street, Room 481, 572 UCB
City:   Pinecliffe
City:   Boulder
State/Zip:  CO  80471-0448
State/Zip:   CO 80303 - 1058
Phone:  (720) 309-8475
Phone:   (303) 735-6692


Principal Investigator (Name, E-mail, Mail Address, City/State/Zip, Phone)
Christine Escobar
chris@spacelabtech.com
P.O. Box 448 Pinecliffe, CO 80471 - 0448
(720) 309-8475

Business Official (Name, E-mail, Mail Address, City/State/Zip, Phone)
Christine Escobar
chris@spacelabtech.com
P.O. Box 448 Pinecliffe, CO 80471 - 0448
(720) 309-8475
Estimated Technology Readiness Level (TRL) :
Begin: 4
End: 6
Technical Abstract

Regenerative space life support will undoubtedly require food production, to recover nutrients and close the carbon loop in a spacecraft habitat.  Aquatic plants have enormous potential for edible biomass production but have been little studied as potential food crops for space applications.  The proposed μG-LilyPond™ is an autonomous environmentally controlled floating plant cultivation system for use in microgravity.  The μG-LilyPond™ concept expands the types of crops that can be grown on a spacecraft to include aquatic floating plants as a nutritional supplement for the crew diet.  Innovative features include low maintenance, increased reliability with passive water delivery, volume efficiency, full life cycle support via vegetative propagation, close canopy lighting, and crop versatility.  Biomass produced will be used primarily as food but could also be used for biofuel or fertilizer.  This collaborative effort between Space Lab Technologies, University of Colorado, and Refcon Services, Inc. will combine Phase II design, analysis, prototype fabrication, and testing to demonstrate technology function and prepare for flight prototype demonstration in the space environment.  Phase II will begin with the Phase I conceptual design and analyses and culminate in the detailed design, fabrication and testing of an integrated engineering demonstration unit (EDU).  In addition, we will develop a flight prototype of the water transport loop, built to operate in a relevant microgravity environment, for use in future flight opportunities.  Finally equivalent system mass of the proposed μG-LilyPond™ concept will be established for the detailed EDU design.  Phase I conceptual design and feasibility assessment illuminated several important focus areas for Phase II, and well positioned our team to accomplish our proposed objectives.

Potential NASA Applications

μG-LilyPond™ will provide supplemental fresh food for microgravity spacecraft habitats, at reduced cost for infrastructure, power, consumables, and crew time.  Space Lab’s Phase III goal is the development of a flight ready μG-LilyPond™ unit to be flown on the ISS or other orbiting research facilities for operational demonstration. There are also many innovative technologies within the growth chamber that could be valuable to several NASA programs, including the capillary growth bed, close canopy LED lighting, rotary sieve harvester, and environmental control algorithms.  Each of these technologies are vital components of integrated chamber but can also be modular elements incorporated into other research platforms.  The growth chamber and its modular technologies have the potential for infusion into several NASA programs, including the Advanced Exploration Systems program under HEOMD for bioregenerative food production or synthetic biology applications (biofuel).  The growth chamber could also serve as an improved research platform for gravitational biology under SLPSRA.  The modular technologies could also be incorporated into existing life science research facilities.  SLPSRA could use the capillary driven water re-cycling loop as a research platform for fluid physics. HRP could utilize our growth chamber to research the in-flight production of vitamins, protein, and n3 fatty acids.  μG-LilyPond™ could also be utilized on the ISS as a plant biology research facility.

Potential Non-NASA Applications

Water Lentils as a Food Ingredient/Nutritional Supplement: LilyPond Water Lentils are a whole food ingredient that can be used in high protein nutritional supplements, food products like baked goods, or even as a fresh vegetable, sold either fresh or freeze dried to food product manufacturers and nutritional supplement providers.  With a specially optimized growth process, we can provide a water lentil product with higher nutritional density and yield than other water lentils on the market today. Agricultural Equipment/Supplies for Indoor Duckweed Vertical Farming: When we have established a market demand for our innovative, nutritionally dense plant product, we can then start selling our customized agricultural equipment and proprietary environmental control software to other horticulturists. Close Canopy Lighting for Indoor Vertical Farming:  Other potential commercial markets may exist for μG-LilyPond sub-system technologies, developed to optimize duckweed cultivation for autonomy and efficiency.  For instance, the lighting system might be marketed to plant biology researchers.  It will allow fine tuning of the light spectrum and high intensity output, with highly efficient LEDs in a relatively small panel.  Space Lab has discussed this innovation with plant biologists who suggested we might market the lighting panel as a way to retrofit old growth chambers with outdated lighting systems.


PROPOSAL NUMBER:
 17-2- T15.01-9848
PHASE 1 CONTRACT NUMBER:
 NNX17CD10P
SUBTOPIC TITLE:
 Distributed Electric Propulsion Aircraft Research
PROPOSAL TITLE:
 Demonstration of Autonomous Differential Throttle-based Flight Control for Aircraft with Distributed Electric Propulsion
SMALL BUSINESS CONCERN (SBC):
RESEARCH INSTITUTION (RI):
Name:   Empirical Systems Aerospace, Inc.
Name:   University of Illinois at Urbana-Champaign
Street:  P.O. Box 595
Street:  104 S Wright St
City:   Pismo Beach
City:   Urbana
State/Zip:  CA  93448-9665
State/Zip:   IL 61801 - 2957
Phone:  (805) 275-1053
Phone:   (217) 300-0949


Principal Investigator (Name, E-mail, Mail Address, City/State/Zip, Phone)
Jeffrey Freeman
jeff.freeman@esaero.com
P.O. Box 595 Pismo Beach, CA 93448 - 9665
(805) 275-1053

Business Official (Name, E-mail, Mail Address, City/State/Zip, Phone)
Andrew Gibson
andrew.gibson@esaero.com
P.O. Box 595 Pismo Beach, CA 93448 - 9665
(805) 275-1053
Estimated Technology Readiness Level (TRL) :
Begin: 3
End: 6
Technical Abstract

A series of RDT&E activities is proposed to create and demonstrate a reconfigurable, autonomous flight controller for the Aircraft for Distributed Electric Propulsion Throttle-based Flight Control (ADEPT-FC) which was designed and built in Phase I, a 33 lb remote controlled aircraft featuring eight overwing electric ducted fans (EDFs) distributed spanwise along the wing’s trailing edge. The proposed study will be the first to show that a complete and accurate description of the propulsion airframe integration (PAI) effects enables autonomous flight of a DEP aircraft using a standard approach to model-based flight control. A combination of modeling & 6DoF dynamic simulation leveraging OpenVSP/VSPAERO, wind-tunnel and hardware-in-the-loop (HITL) ground testing, and system identification (SysID) flight testing will be completed to support the design of the autonomous controller. The resultant controller will be demonstrated in flight on the ADEPT-FC research aircraft at multiple stages of development, including trim flight with uniform and asymmetric throttle mixing as well as DEP system fault tolerance through autonomous controller reconfiguration. Additional research products from the study will include an empirically-derived body of knowledge pertaining to PAI for DEP aircraft, a “DEP Array” custom component for OpenVSP, and VSPAERO validation artifacts to characterize the tool’s ability to predict PAI behaviors, all of which are intended to be disseminated open source to the aerospace community. Autonomous flight control of DEP aircraft with strong PAI effects is one piece of a greater integrated autonomous controller (IAC) envisioned for hybrid electric distributed propulsion (HEDP) aircraft, a technology foreseen by ESAero to enable substantial risk probability and criticality reduction, improved energy efficiency, and reduced pilot workload.

Potential NASA Applications

One of the three commercialization strategies envisioned by ESAero for the proposed autonomous controller technology and the IAC product it would be a part of is to develop and integrate an IAC for NASA’s X-57 “Maxwell” aircraft. There are presently no active efforts by NASA to integrate health-aware, autonomous flight control capability on NASA’s X-57 Maxwell aircraft despite the fact that most subject matter experts on DEP agree that such a technology is strongly recommended for safe and efficient operation. Introduction of an IAC could benefit the SCEPTOR mission objectives through risk probability and criticality reduction, improving cruise efficiency, and by fostering the validation and demonstration of an enabling technology for future commercial DEP aircraft. Additional potential NASA commercial applications are known to be numerous but have not yet been specifically identified. The topics of DEP, PAI, OpenVSP, and autonomy relate to Strategic Thrusts 3a, 4, and 6 of the ARMD and have ties to several NASA programs including TACP, AAVP, AOSP, and IASP through projects including CAS, TTT, AATT, SASO, and UAS in the NAS. As an engineering services contractor with close ties to all aeronautics centers of NASA, ESAero will actively pursue follow-on efforts to leverage its newfound core competencies and intellectual property in support of any these programs and projects.

Potential Non-NASA Applications

ESAero has targeted the rapidly growing Urban Air Mobility (UAM) market led by Uber for the eventual Non-NASA commercialization of the IAC technology and product. The eVTOL aircraft being developed for this market features many of the hallmark characteristics that call for IAC technology, including numerous high-power electric propulsors, DEP-based control concepts, and strong PAI-related dynamical complexities. Additionally, autonomous systems have already been identified by Uber Elevate as a future feature of their fleet, owing to their superior safety and operating costs. ESAero’s end-goal for this path of commercialization is to sell or license the IAC technology to Uber and/or one or more of the aircraft developers in the UAM market. Post-Phase II activities needed to enter this market include the development and demonstration of the IAC technology on a larger aircraft with features matching that of eVTOL aircraft, such as Uber Elevate’s eCRM-001 concept, to increase the TRL to 7 and attract the interest of airframes in the eVTOL community. ESAero intends to leverage their strong relationship with Uber and/or their partners to secure funding for this first activity. The next milestone will be to attract strategic investment from Uber or their partners to fund additional RDT&E needed to achieve TRL 8&9 for the IAC in time for adoption of autonomous flight in the Uber Air fleet in the early-to-mid 2020’s.


PROPOSAL NUMBER:
 17-2- T12.02-9846
PHASE 1 CONTRACT NUMBER:
 NNX17CK09P
SUBTOPIC TITLE:
 Technologies to Enable Novel Composite Repair Methods
PROPOSAL TITLE:
 Efficient Composite Repair Methods for Launch Vehicles
SMALL BUSINESS CONCERN (SBC):
RESEARCH INSTITUTION (RI):
Name:   Luna Innovations, Inc.
Name:   Aerospace Federally Funded Research and Development Center
Street:  301 1st Street Southwest, Suite 200
Street:  2310 East El Segundo
City:   Roanoke
City:   El Segundo
State/Zip:  VA  24011-1921
State/Zip:   CA 90245 - 4609
Phone:  (540) 769-8400
Phone:   (310) 336-5233


Principal Investigator (Name, E-mail, Mail Address, City/State/Zip, Phone)
Dr. Daniel Metrey PhD
metreyd@lunainc.com
3155 State Street Blacksburg, VA 24060 - 6604
(540) 961-4509

Business Official (Name, E-mail, Mail Address, City/State/Zip, Phone)
Michael Pruzan
pruzanm@lunainc.com
301 1st Street Southwest, Suite 200 Roanoke, VA 24011 - 1921
(540) 769-8430
Estimated Technology Readiness Level (TRL) :
Begin: 4
End: 6
Technical Abstract

Polymer matrix composites are increasingly replacing traditional metallic materials in NASA launch vehicles due to high strength to weight ratio, manipulative properties, and corrosion resistance.  However, the inspection and repair methods for these materials are considerably more complicated.  For aerospace platform repairs, a composite laminate patch must be manually fabricated on-site and then bonded to the damaged structure.  Prior to the bonding or co-curing, a vacuum debulk process is performed on the lay-up, requiring a separate piece of support equipment. The ideal method would allow for a rapid structural repair to be performed in locations with minimal access without the need for extensive tooling, surface prep, cure times and complicated techniques. In Phase I, engineers at Luna demonstrated a comprehensive system that included facile surface preparation, single-bag out of autoclave processing and Luna’s unique fiber optic measurement capability for monitoring repair state. This Phase II program will focus on optimizing these methods for launch vehicle composite damage that can be performed during ground processing of the launch vehicle without the need for full replacement. It is expected that the technology will meet NASA launch vehicle requirements and demonstrate potential for in-situ repairs to spacecraft on long missions.

Potential NASA Applications

Luna’s composite repair system will be directly applicable to launch pad damage mitigation activities for current and future launch vehicles. Ground processing operators will be able to identify the damage that will require patching and Luna’s technology will enable rapid surface preparation, patch bonding, vacuum debulking and consolidation without the need for complicated tooling or equipment. This should dramatically reduce time and energy costs while maintaining high probabilities of mission success.

Potential Non-NASA Applications

Luna’s technology is applicable to a wide range of composite material systems, manufacturing methods, and applications. The barrier and curative approaches can be adapted to prepreg systems that would have prolonged room temperature storage capability with the ability to be quickly cured, out of autoclave and on-demand. The impact of these systems on the broad composite commercial market could be enormous.


PROPOSAL NUMBER:
 17-2- T4.01-9845
PHASE 1 CONTRACT NUMBER:
 NNX17CA61P
SUBTOPIC TITLE:
 Information Technologies for Intelligent and Adaptive Space Robotics
PROPOSAL TITLE:
 Towards a Turn-key Software Suite for Controlling Complex Remote Robots using English-language Electronic Procedures
SMALL BUSINESS CONCERN (SBC):
RESEARCH INSTITUTION (RI):
Name:   TRACLabs, Inc.
Name:   Southwest Research Institute
Street:  100 North East Loop 410, Suite 520
Street:  6220 Culebra Road
City:   San Antonio
City:   San Antonio
State/Zip:  TX  78216-4727
State/Zip:   TX 78238 - 5166
Phone:  (281) 461-7886
Phone:   (210) 522-5823


Principal Investigator (Name, E-mail, Mail Address, City/State/Zip, Phone)
Stephen Hart
swhart@traclabs.com
100 North East Loop 410, Suite 520 San Antonio, TX 78216 - 1234
(281) 678-4194

Business Official (Name, E-mail, Mail Address, City/State/Zip, Phone)
David Kortenkamp
korten@traclabs.com
100 North East Loop 410, Suite 520 San Antonio, TX 78216 - 1234
(281) 461-7886
Estimated Technology Readiness Level (TRL) :
Begin: 4
End: 6
Technical Abstract

There is a disconnect between the mission operation languages used by various NASA robots and by flight controllers or crew members. This disconnect unduly burdens mission operators, as it requires the involvement of expert robot programmers to define each activity. To eliminate this burden, we propose that robots in space (whether autonomous or remotely commanded by humans) should be commanded using verified, human-readable procedures. Such an approach will allow NASA to seamlessly allocate new robotic capabilities and resources to existing space activities, and will facilitate the cooperation of humans and their robot assistants when performing joint activities.

In Phase I of this work, progress towards this goal was demonstrated by combining two previously disparate software suites. TRACLabs' Procedure IDE for authoring and running electronic procedures and our CRAFTSMAN mobile manipulation planning and control software have been developed over the past few years in conjunction with NASA engineers and researchers on various projects. The integration of these two research streams in this PHARAOH (Procedure-Handling Architecture for Robots And/Or Humans) system has demonstrated the promise of our approach, while also highlighting deficiencies in the current electronic procedure software as it pertains to command and control of complicated remote robots. In Phase II, we will build upon lessons learned to replace, improve, and validate various architectural, operational, and computational components of the Phase I prototype. The specific aim of this Phase II is to achieve a TRL-6 software package with suitable software and hardware validations to ensure that TRL-7 performance could be achieved within a 5 year time frame, where we envision non-robotics flight controllers using PHARAOH to task remote robotic assets by using English-language procedures that automatically map directly to robot capabilities on the back-end.

Potential NASA Applications

For NASA, we envision non-robotics flight controllers being able to write and run electronic procedures to task remote robotic assets to create English language procedures that automatically map directly to robot capabilities behind the scenes.  TRACLabs and SwRI will work with NASA personnel to ensure the Phase II system aligns with provides NASA-relevant mission capabilities applicable to systems such as GSFC's Satellite Servicing Projects Division (SSPD), Resource Prospector, Astrobee, K-Rex, Valkyrie, and the Deep Space Gateway.

 

Potential Non-NASA Applications

The target market for this technology are organizations (both commercial and government) who need a human-readable executive for remote commanding of mobile manipulation robots. This includes automotive manufacturing, oil drilling (including undersea), chemical manufacturing, nuclear decommissioning, private space companies, and government organizations such as DoD, including SPAWAR, TRADEC, and others. TRACLabs already has three Fortune 500 customers that use the PRIDE electronic procedure software and the CRAFTSMAN robotic-tasking suite.  By combining these two previously disparate software packages in this project, all three customers are potential immediate customers.

 


PROPOSAL NUMBER:
 17-2- T6.02-9840
PHASE 1 CONTRACT NUMBER:
 NNX17CJ19P
SUBTOPIC TITLE:
 Liquid Quantity Sensing Capability
PROPOSAL TITLE:
 Volume Sensor for Flexible Fluid Reservoirs in Microgravity
SMALL BUSINESS CONCERN (SBC):
RESEARCH INSTITUTION (RI):
Name:   Creare, LLC
Name:   Dartmouth College
Street:  16 Great Hollow Road
Street:  Office of Sponsored Projects, 11 Rope Ferry Road, #6210
City:   Hanover
City:   Hanover
State/Zip:  NH  03755-3116
State/Zip:   NH 03755 - 1421
Phone:  (603) 643-3800
Phone:   (603) 646-9163


Principal Investigator (Name, E-mail, Mail Address, City/State/Zip, Phone)
Marc Ramsey
mcr@creare.com
16 Great Hollow Road Hanover, NH 03755 - 3116
(603) 643-3800

Business Official (Name, E-mail, Mail Address, City/State/Zip, Phone)
Robert Kline-Schoder
contractsmgr@creare.com
16 Great Hollow Road Hanover, NH 03755 - 3116
(603) 640-2487
Estimated Technology Readiness Level (TRL) :
Begin: 4
End: 6
Technical Abstract

The Advanced Space Suit carries consumable cooling water maintained at ambient pressure within a soft-walled, flexible reservoir. To ensure uninterrupted thermal control it is critical to monitor the volume of water remaining, but no known sensor is suitable for this task. Existing measurement techniques are unacceptably sensitive to the motion and varying geometry of the reservoir in microgravity, or to electromagnetic interference within the suit environment. We have developed a simple, compact, low power sensor that accurately measures the volume of fluid in any soft-walled bladder. Our innovative sensing technique will provide an accurate measurement that is insensitive to gravity, the motion and geometry of the reservoir, the presence of air pockets, and electromagnetic interference. We will develop a fully integrated sensor system suitable for use on the Advanced Space Suit and perform functional validation and spaceflight qualification testing.

Potential NASA Applications

The Feedwater Supply Assembly in the Advanced Space Suit is a soft-walled, flexible reservoir containing cooling water. The water is circulated through the thermal control loop and slowly consumed by evaporation at the Suit Water Membrane Evaporator, rejecting waste heat to control occupant temperature. To ensure uninterrupted thermal control and occupant survival, it is critical to monitor the remaining water volume. The sensor developed under this program will accurately monitor the remaining volume in this reservoir. This sensor will function equally well in any other flexible fluid reservoir on a space platform. This may include fuel, coolant, and cryogen storage bladders on various spacecraft, satellites, and stations.

Potential Non-NASA Applications

This sensor technology will meet similar bladder volume monitoring needs in other microgravity applications such as commercial spacecraft and orbital stations, along with water and fuel storage bladders used in military and recreational applications.


PROPOSAL NUMBER:
 17-2- T4.03-9829
PHASE 1 CONTRACT NUMBER:
 NNX17CP66P
SUBTOPIC TITLE:
 Coordination and Control of Swarms of Space Vehicles
PROPOSAL TITLE:
 Distributed Intelligent Swarm Control & Utilization System (DISCUS): Further Maturation and Demonstration
SMALL BUSINESS CONCERN (SBC):
RESEARCH INSTITUTION (RI):
Name:   Scientific Systems Company, Inc.
Name:   University of Washington
Street:  500 West Cummings Park, Suite 3000
Street:  Gerberding Hall G80 Box 351202
City:   Woburn
City:   Seattle
State/Zip:  MA  01801-6562
State/Zip:   WA 98195 - 9472
Phone:  (781) 933-5355
Phone:   (206) 543-4043


Principal Investigator (Name, E-mail, Mail Address, City/State/Zip, Phone)
Jovan Boskovic
jovan.boskovic@ssci.com
500 West Cummings Park, Suite 3000 Woburn, MA 01801 - 6562
(781) 933-5355

Business Official (Name, E-mail, Mail Address, City/State/Zip, Phone)
Ms. Lora Loyall
lora.loyall@ssci.com
500 West Cummings Park, Suite 3000 Woburn, MA 01801 - 6562
(781) 933-5355
Estimated Technology Readiness Level (TRL) :
Begin: 3
End: 5
Technical Abstract

DISCUS is a generic Guidance, Navigation and Control (GNC) system for swarms of SmallSats. It integrates communications and relative localization with innovative Density Control Algorithms (DCA) enabling robust operation in a variety of uncertain environments. As such, it presents a key enabling technology for future Deep Space missions including space apertures at Lagrangian points, and orbiting missions at asteroids and faraway planets and moons.

 

The key aspect of DISCUS is tight integration of communications with relative localization and control. The proposed RF communications architecture provides a dual benefit since the RF signals are also used for relative localization based on ToA and TDoA sensing modes. Density Control approach is highly robust to failures of individual spacecraft and has the key property of self-healing, which allows for mission continuation even with a reduced capability. DCA are integrated with our effective collision detection and avoidance algorithms improving the overall system safety and efficiency. The contingency mitigation module monitors the health of the swarm and removes failed spacecraft in a safe manner. Proposed DISCUS algorithms were demonstrated in Phase I through computer simulations, as well as through initial flight tests at a UW Lab.

 

Phase II will focus on the following: (i) Further development of mission-related DISCUS requirements and metrics and a mission simulation; (ii) Further development and testing of the communications architecture, relative localization strategy and Density Control Algorithms; (iv) Further development and testing of the Collision Avoidance and Contingency Mitigation algorithms; (v) Hardware testing of the overall DISCUS system using quadcopters in the UW lab; and (vi) DISCUS software delivery to NASA. Phase II-X will focus on transition of the DISCUS technology to NASA missions.

Potential NASA Applications

DISCUS is applicable to future NASA Deep Space missions including space apertures at Lagrangian points, and orbiting missions at asteroids and faraway planets and moons. SmallSat swarms could be used to build Synthetic Aperture Radars, sparse aperture sensors, stellar interferometers, and global broadband internet. Swarms of SmallSats could also provide global real-time space weather monitoring, a survey of the geomagnetic field and its temporal evolution, and gain new insights into improving our knowledge of the Earth's interior and climate.

Potential Non-NASA Applications

Due to lower costs of development and launch, several future commercial applications of SmallSat swarms such as remote sensing, on-orbit servicing, and sparse aperture imaging are viable. SmallSat swarms can be used for rapid communication and imaging tasks to provide situational awareness solutions needed by the Department of Defense, National Reconnaissance Office, and Department of Homeland Security. DISCUS will also have application in commercial Deep Space missions such as asteroid surveillance to locate areas where mining will be feasible and profitable.


PROPOSAL NUMBER:
 17-2- T8.02-9810
PHASE 1 CONTRACT NUMBER:
 NNX17CG42P
SUBTOPIC TITLE:
 Photonic Integrated Circuits
PROPOSAL TITLE:
 High Performance 3D Photonic Integration for Space Applications
SMALL BUSINESS CONCERN (SBC):
RESEARCH INSTITUTION (RI):
Name:   Freedom Photonics, LLC
Name:   University of California-Santa Barbara
Street:  41 Aero Camino
Street:  ESB 3205D University of California, Santa Barbara
City:   Santa Barbara
City:   Santa Barbara
State/Zip:  CA  93117-3104
State/Zip:   CA 93106 - 5080
Phone:  (805) 967-4900
Phone:   (805) 893-7163


Principal Investigator (Name, E-mail, Mail Address, City/State/Zip, Phone)
Dr. Leif Johansson
leif@freedomphotonics.com
41 Aero Camino Goleta, 93117 - 9311
(805) 967-4900

Business Official (Name, E-mail, Mail Address, City/State/Zip, Phone)
Dr. Milan Mashanovitch
mashan@freedomphotonics.com
41 Aero Camino Santa Barbara, CA 93117 - 3104
(805) 967-4900
Estimated Technology Readiness Level (TRL) :
Begin: 2
End: 4
Technical Abstract

In this work, Freedom Photonics will team with University of California, Santa Barbara to develop a hybrid integration platform that integrates yielded, best-of-breed active optical components with low-cost, high functionality Silicon Photonics components in a manner that is compatible with foundry fabrication (such as AIM Photonics). This will be performed in a highly manufacturable manner, using passively aligned pick-and-place technology to place the semiconductor components on the interposer substrate to form a system in package-type of integration platform for photonic space applications. Using our novel 3D hybrid integration approach developed at UCSB, an integration technology that is scalable, low cost, reliable, and that demonstrates superior thermal performance is realized. The approach is based on flip-chip bonding and vertical coupling between InP and silicon waveguides.

Potential NASA Applications

This proposed work will make space science and exploration more effective, affordable, and sustainable in that it will enable low cost and low SWaP technologies for space communications, freeing up resources for other onboard systems. The PIC technology will also better utilize the high bandwidth afforded by optics and scale readily to higher data rates. This technology will allow more frequent and lower cost missions and allow for incorporating free space laser modems on smaller satellites (ex. cubesats) and small craft (ex. drones).

Potential Non-NASA Applications

The developed miniaturized photonic integrated components will find application in emerging commercial markets such as
Optical fiber sensor systems,
Optical links such as hybrid fiber-wireless systems,
Non-invasive medical optical sensing and imaging,
Chip-scale integrated systems and subsystems for large data centers and supercomputers.


PROPOSAL NUMBER:
 17-2- T8.01-9801
PHASE 1 CONTRACT NUMBER:
 NNX17CL72P
SUBTOPIC TITLE:
 Technologies for Planetary Compositional Analysis and Mapping
PROPOSAL TITLE:
 Development of an Optic Fiber Based Hybrid Spectroscope
SMALL BUSINESS CONCERN (SBC):
RESEARCH INSTITUTION (RI):
Name:   Laser & Plasma Technologies, LLC
Name:   University of Virginia
Street:  1100 Exploration Way
Street:  Albert H. Small Building 159 Engineer’s Way. P.O. Box 400257
City:   Hampton
City:   Charlottesville
State/Zip:  VA  23666-1339
State/Zip:   VA 22904 - 4259
Phone:  (757) 325-6783
Phone:   (434) 297-7402


Principal Investigator (Name, E-mail, Mail Address, City/State/Zip, Phone)
Mr. Waverly Marsh
wmarsh@lpttech.com
1100 Exploration Way Hampton, VA 23666 - 1339
(757) 325-6783

Business Official (Name, E-mail, Mail Address, City/State/Zip, Phone)
Dr. Nita Gupta
ngupta@lpttech.com
1100 Exploration Way Hampton, VA 23666 - 1339
(757) 876-8761
Estimated Technology Readiness Level (TRL) :
Begin: 4
End: 6
Technical Abstract

NASA has supported several instrument development efforts for exploration of Mars other extraterrestrial bodies.This exemplifies the importance of new instrument development efforts for successful advancement of NASA missions.With this in mind Laser&Plasma Technologies successfully demonstrated feasibility of integrating LIBS&Raman instruments into Optical Based Hybrid Spectroscope that meets NASAs desire for targeted elemental and compound determination.Through Phase II efforts this unique hybrid instrument will have lightweight compact design amenable for integration into a Mars Rover type platform that the head of the instrument can be positioned by the Rovers robotic arm to the target of interest while data is sent to the main unit within the body of the rover for analysis & storage.For future manned missions,the hybrid instrument may enable recognition of important elemental minerals for mining and compounds that may be used for locally sourced agriculture. Another application is collection of fluorescent data, allowing NASA to explore biological compounds that may be present in Martian soils in minute quantities.Major advantages of a dual instrument include more rapid and accurate data collection from precise targets,minimal damage to substrate materials & avoidance of switching between different systems.In addition to benefits in NASA missions,this novel instrument may improve target identification, compositional measurement in market currently utilizing standalone spectroscopy such metal recycling,chemical processing,archeology, mining operations,historical art pharmaceuticals medical research others.This system also has applications for the DoD where the high laser intensity LIBS aspect of the instrument could inspect and then drill through coatings to analyze subsurface targets, providing valuable infrastructure data on coatings and subsurface corrosion as well as other metallurgical data

Potential NASA Applications

NASA has a desire to explore other planets moons to assess the composition of such extraterrestrial bodies.NASA has supported several efforts in the area of Laser Induced Breakdown Spectroscopy LIBS to perform elemental analysis and has expressed desire to incorporate Raman Spectroscopy functionality to perform compound analysis.LPT is proposing to further advance the Phase1 development efforts of Optical Fiber Based Hybrid Spectroscope to develop this technology into compact robust instrument that can be used on Mars type Rover for extraterrestrial exploration.Instrument design will be structurally amenable for integration into Mars Rover type of platform enable rapid acquisition of both types of data from single target location. LPT has developed the methodology such that the head of the instrument can be positioned by the Rover’s robotic arm to the target of interest.This feature may provide opportunity for the high laser intensity LIBS aspect of instrument to both inspect then drill through clean surfaces to analyze subsurface targets.Another application for the proposed instrument is for collection of fluorescent data.Fluorescent data collection can benefit NASA in the exploration biological compounds that may be present in Martian soils in minute quantities.In addition the presence of water fluorescence and Raman spectra can give indications of moisture related processes in rocks &soil

Potential Non-NASA Applications

Standalone Raman,LIBS systems are used in a variety of industries, including metal recycling,chemical processing archeology mining operations historical art harmaceuticals medical research others.These systems also have potential applications in infrastructure health monitoring.The key for successful introduction of an Optical Based Hybrid Spectroscope into these markets is to demonstrate the major advantages a dual instrument can provide.These advantages include more rapid and accurate data collection of both types of spectra from precise targets minimal damage to substrate materials & avoidance of time consuming switching between 2 different commercial systems.The Hybrid spectroscope provides features that are desirable for DOD application,where the high laser intensity LIBS aspect of instrument could inspect then drill through coatings to analyze subsurface targets. The LIBS & Raman features at the target location allow the instrument to provide infrastructure data on coating subsurface corrosion as well as metallurgical data.It could benefit military depot operation to implement novel spectroscope for analysis of paint composition & degradation of composite chemical bond.Proposed instrument to improve the bottom line for target identification compositional measurements in markets while the lightweight compact design form will aid a greater variety of applications


PROPOSAL NUMBER:
 17-2- T13.01-9800
PHASE 1 CONTRACT NUMBER:
 NNX17CS06P
SUBTOPIC TITLE:
 Intelligent Sensor Systems
PROPOSAL TITLE:
 Through Wall Wireless Intelligent Sensor and Health Monitoring (TWall-ISHM) System
SMALL BUSINESS CONCERN (SBC):
RESEARCH INSTITUTION (RI):
Name:   American GNC Corporation
Name:   Rensselaer Polytechnic Institute
Street:  888 Easy Street
Street:  110 8th Street
City:   Simi Valley
City:   Troy
State/Zip:  CA  93065-1812
State/Zip:   NY 12180 - 3522
Phone:  (805) 582-0582
Phone:   (518) 276-8359


Principal Investigator (Name, E-mail, Mail Address, City/State/Zip, Phone)
Dr. Francisco Maldonado
emelgarejo@americangnc.com
888 Easy Street Simi Valley, CA 93065 - 1812
(805) 582-0582

Business Official (Name, E-mail, Mail Address, City/State/Zip, Phone)
Emily Melgarejo
emelgarejo@americangnc.com
888 Easy Street Simi Valley, CA 93065 - 1812
(805) 582-0582
Estimated Technology Readiness Level (TRL) :
Begin: 5
End: 7
Technical Abstract

To support development at NASA’s Stennis Space Center (SSC) testing facilities and infrastructure for the monitoring of remote or inaccessible measurement locations, American GNC Corporation (AGNC) and Rensselaer Polytechnic Institute (RPI) have developed the Through Wall Wireless Intelligent Sensor and Health Monitoring (TWall-ISHM) System. This technology allows deploying flexible instrumentation and health monitoring capability in fully enclosed areas such as vacuum jacketed pipelines or pressurized tanks by a non-intrusive data and energy transfer through-wall system where perforations are avoided, maintaining structural integrity of monitored systems. Major innovations and capabilities are: (a) non-intrusive sensing where holes in isolating walls are not required; (b) wireless data and power transmission through solid walls by robust ultrasound techniques; (c) self-diagnostics of piezoelectric (PZT) elements used either for ultrasound communications or as sensors; (d) embedded intelligent algorithms in the TIMs (Transducer Interface Modules), i.e. smart sensors; and (e) sensor network operation capability, i.e. smart sensors on both sides of the wall and in remote locations can communicate to a network coordinator. TWall-ISHM is an integral solution with Instrumentation and Measurement methods, advanced ultrasound communications (in addition to RF and wired communication), and health monitoring in an innovative yet practical product.

Potential NASA Applications

The TWall-ISHM will directly support NASA testing facilities by providing an innovative cost-effective instrumentation and measurement (I&M) as well as health monitoring system with minimally intrusive ultrasound communication and intelligent data analysis diagnostic techniques. The innovation of the system is the ability to extend measurement capabilities in previously inaccessible spaces where physical holes would either comprise structural integrity or result in major disassembly downtime costs. Potential applications are: (a) long-duration use in vacuum jacketed pipelines; (b) cryogenic systems monitoring; (c) explosive environments such as propulsion systems in test stands; (d) pressurized tanks and storage vessels; (e) strain gage instrumentation, (f) distribution systems, etc. Generally, the system can be used for expanding I&M in critical systems and test stands such as those at Stennis Space Center. Rather than requiring manual inspections over miles of pipelines, TWall-ISHM nodes (internal sensor system and outside data acquisition system) can be installed at specific locations for automatic data recovery. High-dollar value systems are a focus, where the TWall-ISHM should provide cost-savings by enabling flexible system monitoring without disassembling or drilling holes to obtain data and to analyze problems. The technology can be readily applied to different structure types, thus maximizing flexibility and ease of installation, further reducing costs for NASA.

Potential Non-NASA Applications

The TWall-ISHM provides novel instrumentation and monitoring capability with significant application potential for a wide range of non-NASA systems within both civilian and military sectors. For example, the TWall-ISHM can be applied to systems health monitoring (processing of strain, stress, humidity, temperature, etc.) of equipment, machinery, and assets in difficult to reach locations such as airframe components (wings or enclosed fuselage compartments) and remote/inaccessible bridge elements, civil structures, and military systems. Innovative aerospace instrumentation and advanced measurement techniques will be enabled when considering data and energy transfer in pressurized aircraft cabins or cockpits, where sensors in both the outside and inside of the cabin can transmit data and power with the thru-wall ultrasound technology. Other applications are: (1) oil wells; (2) submarine hull data acquisition; (3) shipment containers monitoring (e.g. ultrasound tags instead of RFID tags); (4) underwater vehicles; (5) extending the coverage of existing wireless sensor networks (WSNs); (6) corrosion monitoring of civil structures, vessels, military infrastructure; (7) tracking of military assets and life-cycle status monitoring; (8) Computerized Maintenance Management Systems (CMMS) and Enterprise asset management; (9) complex system maintenance and repair guidance; (10) logistics and depot maintenance; and (11) Internet of Things (IOT).


PROPOSAL NUMBER:
 17-2- T3.02-9778
PHASE 1 CONTRACT NUMBER:
 NNX17CC67P
SUBTOPIC TITLE:
 Intelligent/Autonomous Electrical Power Systems
PROPOSAL TITLE:
 Autonomous Power Controller for Mission Critical Microgrids
SMALL BUSINESS CONCERN (SBC):
RESEARCH INSTITUTION (RI):
Name:   PC Krause and Associates, Inc.
Name:   Purdue University-Main Campus
Street:  3000 Kent Avenue, Suite C1-100
Street:  155 South Grant Street
City:   West Lafayette
City:   West Lafayette
State/Zip:  IN  47906-1075
State/Zip:   IN 47907 - 2114
Phone:  (765) 464-8997
Phone:   (765) 494-6210


Principal Investigator (Name, E-mail, Mail Address, City/State/Zip, Phone)
Dr. Benjamin Loop
loop@pcka.com
3000 Kent Avenue, Suite C1-100 West Lafayette, IN 47906 - 1075
(765) 464-8997

Business Official (Name, E-mail, Mail Address, City/State/Zip, Phone)
Mrs. Teresa Arens
tarens@pcka.com
4291 West 96th St Indianapolis, IN 46268 - 1113
(317) 410-1865
Estimated Technology Readiness Level (TRL) :
Begin: 3
End: 4
Technical Abstract

PCKA is partnering with researchers at Purdue University to develop an Autonomous Power Controller (APC) for mission-critical microgrids to supply electric power in a highly autonomous and secure manner to accomplish mission objectives. The APC consists of a centralized controller connected to an array of local component controllers. The centralized controller will be capable of optimal generation and load scheduling, abnormal conditions and/or failure detection, and system restoration, while the local controllers monitor system components and pass sensor data to the centralized controller. The main objectives of the Phase II effort are 1) to validate and augment the controller’s capabilities and 2) to test its performance in a hardware-in-the-loop environment. The hardware development will leverage modular power electronics components designed by PCKA for other efforts. This will allow for cost-effective hardware testing of the control algorithms. Potential applications of the APC will be in deep space explorations, aeronautic flights, and special human habitats, where human supervision of the electric power systems is limited and availability of electric power is critical to mission success.

Potential NASA Applications

The most immediate NASA applications for this technology is NASAs Deep Space Gateway DSG system which was the focus of the development in the Phase1.The electrical power systems of International Space Station and Exploration Augmentation Module are similar in nature i.e. dc system based on solar arrays and battery energy storage so they are also potential applications for the technology.The APC will also have potential applications in aircraft electrical propulsion systems where electrical system is missioncritical.NASAs CAS & NEAT programs are examples of such systems.PCKA also has existing models of these systems to facilitate future application of the APC.

Potential Non-NASA Applications

While the proposed effort is focused on spacecraft power systems other types of power systems could take advantage of the control technology.The underlying control architecture can be applied to essentially any type of microgrid power system.Terrestrial microgrids do not suffer the same communication latency as deep-space systems however autonomous control of these systems would greatly improve performance through optimal operating point identification & automated reconfiguration in response to faults or disturbances.It should be noted that these systems can be either ac or dc in nature however the APC formulation can remain largely the same.Furthermore the teams approach to development of the control using a simulation-based testbed allows efficient development testing & validation of the approach to a wide array of systems.


Form Generated on 08/03/2018 16:40:50