Cislune and UCF propose a site preparation architecture that relies upon in-situ resources and a small number of rovers and excavators working as a swarm to build durable lunar surfaces with size-sorted and then compacted lunar regolith. Efficient manipulation of bulk regolith via size-sorting and compaction is the most efficient architecture for lunar site preparation. We will test compaction techniques on various combinations of regolith simulant size fractions to determine the maximum strength available from compressed regolith. We will also do PSI and CFD modeling to determine requirements for landing spacecraft to determine where compressed regolith can be used.
Site preparation will be required on the Moon and Mars as landing sites are developed for robotic and human missions. NASA is considering the lunar South Pole of the Moon with PSR’s for water ice, peaks of eternal light for power and heat, and continuous line-of-sight to the Earth for communications which will make it the focus of intensive and repeated robotic and human operations. Crew safety is significantly improved with landing pads and a reduction in ejecta.
Improvements to autonomous site preparation, including surveying, grading, excavation, and compaction are extremely relevant for the terrestrial construction industry. Global construction is a $22 trillion dollar industry annually which is chronically understaffed. Autonomy is being invested in heavily here on Earth, and the lessons from lunar operations can accelerate development.