NASA STTR 2020-I Solicitation

Proposal Summary


PROPOSAL NUMBER:
 20-1- T6.05-5155
SUBTOPIC TITLE:
 Testing of COTS Systems in Space Radiation Environments
PROPOSAL TITLE:
 Testing of COTS Systems in Space Radiation Environments
SMALL BUSINESS CONCERN (SBC):
Streamline Automation, LLC
3100 Fresh Way Southwest
Huntsville AL  35805 - 6720
Phone: (256) 694-5063
RESEARCH INSTITUTION (RI):
Alabama A&M University
Normal, Alabama 35762
AL  35762 - 1234
Phone: (256) 372-5560

Principal Investigator (Name, E-mail, Mail Address, City/State/Zip, Phone)

Name:
Dr. Roberto DiSalvo
E-mail:
roberto.disalvo@streamlineautomation.biz
Address:
3100 Fresh Way Southwest Huntsville, AL 35805 - 6720
Phone:
(256) 713-1220

Business Official (Name, E-mail, Mail Address, City/State/Zip, Phone)

Name:
Alton Reich
E-mail:
Alton.Reich@StreamlineAutomation.biz
Address:
3100 Fresh Way Southwest Huntsville, AL 35805 - 6720
Phone:
(256) 713-1220
Estimated Technology Readiness Level (TRL) :
Begin: 2
End: 4
Technical Abstract (Limit 2000 characters, approximately 200 words)

For long duration space missions beyond LEO there is a wealth of COTS hardware that could potentially be implemented for non-critical tasks within heavily shielded spacecraft cabins. To employ COTS systems for such missions, we propose to use a simulation/experimental/statistical approach for risk acceptance Radiation Hardness Assurance (RHA) suitable for Cis-Lunar and Cis-Mars missions. The simulation component will make use of Monte Carlo N-Particle transport codes to compute the likely secondary radiation environment within the spacecraft and determine the experimental parameters. The experimental component will bombard functioning COTS electronic samples in the AAMU Pelletron accelerator facilities in conditions as similar as possible to those found inside the shielded spacecraft cabins. The statistical component will comprise of a Bayesian methodology combined with an AI Decision Network capable of using a broad variety of historical, similarity, heritage, and specific experimental data for improved qualification and risk mitigation. At the completion of Phase I we expect to have demonstrated a robust and accurate RHA methodology that can be tailored to the risk tolerance appropriate for COTS electronic hardware. The Phase II program will refine and standardize the simulation techniques, testing will be conducted at accelerator facilities with energies >100MeV with a wider array of COTS electronics, and the statistical methodology will be refined. Additionally, in Phase II we will pursue commercialization of this risk acceptance RHA methodology to the nascent commercial space sector.

Potential NASA Applications (Limit 1500 characters, approximately 150 words)

This project addresses the very real need for reduced cost and increased quality for Radiation Hardness Assurance of COTS electronics in planned and future spacecraft designs. Upcoming manned and unmanned missions beyond LEO have an increased need for computing power for scientific, mission crucial tasks. Our team proposes a modeling and component testing-based approach with the application of robust statistical methods to facilitate high-accuracy, low-cost analysis to enable the deployment of COTS electronics in shielded space environments.

Potential Non-NASA Applications (Limit 1500 characters, approximately 150 words)

Streamline Automation will market to COTS electronics manufacturers interested in qualifying and pre-qualifying their hardware for radiation resistance for component risk and failure analysis. This novel approach will grant a competitive advantage in the private space industry, and for industrial electronic failure analysis.

Duration: 13

Form Generated on 06/29/2020 21:15:17