NASA SBIR 2020-II Solicitation

Proposal Summary

Proposal Information

Proposal Number:
20-2- S1.08-4948
Phase 1 Contract #:
80NSSC20C0462
Subtopic Title:
Suborbital Instruments and Sensor Systems for Earth Science Measurements
Proposal Title:
Angstrom: An Imaging Star Photometer

Small Business Concern

   
Firm:
          
Innovative Imaging and Research Corporation
          
   
Address:
          
Building 1103, Suite 140C, Stennis Space Center, MS 39529
          
   
Phone:
          
(228) 688-2452                                                                                                                                                                                
          

Principal Investigator:

   
Name:
          
Mary Pagnutti
          
   
E-mail:
          
mpagnutti@i2rcorp.com
          
   
Address:
          
Building 1103, Suite 140C, MS 39529 - 0001
          
   
Phone:
          
(228) 688-2452                                                                                                                                                                                
          

Business Official:

   
Name:
          
Mary Pagnutti
          
   
E-mail:
          
mpagnutti@i2rcorp.com
          
   
Address:
          
Building 1103, Suite 140C, MS 39529 - 0001
          
   
Phone:
          
(228) 688-2452                                                                                                                                                                                
          

Summary Details:

   
Estimated Technology Readiness Level (TRL) :                                                                                                                                                          
Begin: 5
End: 7
          
          
     
Technical Abstract (Limit 2000 characters, approximately 200 words):

Ground-based sun photometers provide a vital consistent global long-term aerosol data record used to better understand aerosol impact on climate, improve aerosol transport models and bound lidar-derived aerosol products. Sun photometers only provide aerosol information during the day, and even though there is scientific and commercial interest, there are very few aerosol measurements made at night. Innovative Imaging and Research proposes Angstrom, an affordable, easily deployable multiband wide field of view (FOV) imaging star photometer that measures aerosol optical depth (AOD) and the Angstrom parameter across the night sky using stars. It can be used to augment traditional sun/lunar photometer networks and significantly improve atmospheric monitoring.

Angstrom applies state-of-the-art image processing techniques to imaging systems that use emerging high quantum efficiency, low read noise CMOS sensors and high-quality machine vision optics. Early simulations and test data suggest these imaging systems can acquire dim star fields at a relatively high signal-to-noise ratio. Our goal is to achieve a comparable level of accuracy as gold-standard daytime sun photometers.

Imaging star photometers acquire large sky regions measuring near-instantaneous spatial variability not possible with traditional narrow FOV photometers. By imaging multiple stars in a portion of sky covering a wide range of air mass or by continuously imaging stars moving through varying air mass, Angstrom can take advantage of traditional Langley calibration or multi-star methods.

Angstrom tracks stars through image processing, eliminating complex precision moving mechanisms. It also uses the relative positions of stars to determine the camera’s orientation, reducing installation and maintenance costs. This allows it to be more easily deployed on ships, UAVs, and fixed terrestrial locations where it has been difficult to obtain measurements.

          
          
     
Potential NASA Applications (Limit 1500 characters, approximately 150 words):

Angstrom supports atmospheric studies by providing additional nighttime aerosol measurements to atmospheric models. It also supports Decadal Survey recommended ACCP and TEMPO satellite missions and is directly relevant to numerous field campaigns measuring and monitoring aerosols. Combining Angstrom data with micropulse lidar can improve the accuracy of lidar aerosol retrievals. Angstrom data also helps scientists who require atmospherically corrected products from night imaging remote sensing instruments such as the VIIRS DNB.

          
          
     
Potential Non-NASA Applications (Limit 1500 characters, approximately 150 words):

Emerging remote sensing applications that require nighttime aerosol measurements include mapping artificial lights and estimating power usage, important economic measures. Angstrom can complement the Aeronet ground network of solar/lunar photometers to help fill current nighttime data gaps to support these new applications. It can also provide free-space laser communication atmospheric conditions.

          
          
     
Duration:     24
          
          

Form Generated on 05/13/2021 14:42:36