NASA SBIR 2020-II Solicitation

Proposal Summary

Proposal Information

Proposal Number:
20-2- A1.01-5804
Phase 1 Contract #:
80NSSC20C0376
Subtopic Title:
Aeroelasticity and Aeroservoelastic Control
Proposal Title:
Aeroelasticity and Aeroservoelastic Control

Small Business Concern

   
Firm:
          
M4 Engineering, Inc.
          
   
Address:
          
4020 Long Beach Boulevard, Long Beach, CA 90807
          
   
Phone:
          
(562) 981-7797                                                                                                                                                                                
          

Principal Investigator:

   
Name:
          
Myles Baker
          
   
E-mail:
          
mbaker@m4-engineering.com
          
   
Address:
          
4020 Long Beach Boulevard, CA 90807 - 2683
          
   
Phone:
          
(562) 305-3391                                                                                                                                                                                
          

Business Official:

   
Name:
          
Kevin Roughen
          
   
E-mail:
          
kroughen@m4-engineering.com
          
   
Address:
          
4020 Long Beach Boulevard, CA 90807 - 2683
          
   
Phone:
          
(562) 981-7797                                                                                                                                                                                
          

Summary Details:

   
Estimated Technology Readiness Level (TRL) :                                                                                                                                                          
Begin: 5
End: 7
          
          
     
Technical Abstract (Limit 2000 characters, approximately 200 words):

In Phase I, the proposed formulation for an overset, multiblock code based on the unsteady transonic small disturbance equations was shown to be an improvement to the methods typically used during the design phase of flexible flight vehicles by maintaining robustness, accuracy, and computational efficiency while providing solutions to the subsonic, transonic, and supersonic regimes. Work in Phase II will prepare the code for commercialization by expanding its capabilities and use cases and further validating the formulation with a variety of demonstrations that are meaningful to both the NASA and commercial communities. The expanded capabilities will include (1) further development of the code in the supersonic regime, (2) integration with static and dynamic loads, trim, and flutter solutions, (3) and generation of aerodynamic reduced order models for aeroservoelastic analysis and design. A direct plug-in for NASTRAN will be developed, automating grid generation from existing NASTRAN models, and direct integration into NASTRAN’s analysis and optimization solutions. Models being considered for demonstration include the F5 fighter wing, the AGARD 445.6 wing, and the KTH-NASA generic fighter aeroelastic wind-tunnel model.

          
          
     
Potential NASA Applications (Limit 1500 characters, approximately 150 words):

Potential NASA applications will include the use of the developed technology for design of any new generation aircraft or RLV system including complex and novel configurations such as blended wing-bodies, truss-braced wing configurations, low-boom supersonic configurations, etc. Additionally, the aeroelasticity branch at LaRC will be prime candidates for using this technology and capability.

          
          
     
Potential Non-NASA Applications (Limit 1500 characters, approximately 150 words):

This technology is expected to have commercial applications to aircraft design of bombers, fighters, UAV’s, and general aviation airplanes and specifically those operating in the high-subsonic and low-supersonic regimes.  As such, it is expected to have significant commercial applications in airplane structural design, control system design, and aeroservoelastic analyses.

          
          
     
Duration:     24
          
          

Form Generated on 06/11/2021 16:03:16