This work answers the questions and needs of Focus Area 21 Subtopic Z9.01 for small launch vehicle technologies by providing affordable launch architecture, as propulsion systems are the highest cost subsystem for rocket development and PermiAM will enable a large savings for main propulsion system engine development. PermiAM will enable increased design simplicity for AM injectors and reduced development costs through improved face cooling and improved combustion stability. Phase I demonstrated successful use of PermiAM in multiple materials for rocket engine injectors. A full scale proof of concept ground test will be demonstrated by the end of Phase II.
PermiAM material is aligned with NASA Technology Roadmap needs TA1.2, TA2.1, and TA12. Masten is currently focusing on the propulsion elements of PermiAM with direct applicability to small satellite launch vehicles, upper stage engines, and planetary landers in support of the NASA CLPS program. For SLS, the RS-25 and RL10 use a coaxial injector with Rigimesh face. As AM build volumes increase it will be possible to replace the expensive and complex rigimesh injector with an AM version to lower the cost of heavy lift space access.
For aviation it may be used to improve the performance and reliability of commercial jet engines. Current jet engine combustion chamber designs use bypass air and baffles to keep components from overheating. PermiAM would allow the more even application of cooling air, better boundary layer performance, and damp instabilities. Masten is also selling PermiAM to other rocket engine manufacturers.