A high cycle life and high energy density rechargeable battery would address an important need for a reliable power source that offers significant weight reductions in several NASA mission and program applications including energy storage devices for extravehicular activities (EVA), satellites, robots, and spacecraft vehicles. Lithium-sulfur (Li-S) batteries are promising next-generation energy storage devices for NASA missions because of their high theoretical gravimetric energy density of 2500 Wh/kg, which is up to 5 times higher than today’s commercial lithium-ion battery cells. However, their use has been limited by poor cycle life caused by dissolution of polysulfide species from the cathode into the electrolyte during cell operation. In Phase II, Giner will build on a successful Phase I feasibility demonstration to scale up its novel, polysulfide-blocking coating technology in prototype Li-S pouch cells that will be validated under test conditions important for NASA planetary mission applications.
The developed technology will enable the use of high energy density Li-S batteries with increased cycle life for various NASA missions and programs such as: EVA applications (including life support, communications, power tools, glove heaters, lights and other devices); orbital satellites; and other spacecraft and robotic surface lander/rover vehicles such as JUNO and the planned new Mars rover.
Additional markets include power for: electric vehicles; persistent unmanned aerial vehicles; unmanned undersea vehicles; aerospace vehicles; satellites for military communication applications; large-scale grid energy storage; and consumer portable electronics and communication devices.