NASA SBIR 2018-I Solicitation

Proposal Summary

 18-1- Z9.01-8723
 Small Launch Vehicle Technologies and Demonstrations
 PermiAM: Engineered Porosity In-Situ with Fully Dense AM Structure
SMALL BUSINESS CONCERN (Firm Name, Mail Address, City/State/Zip, Phone)
Masten Space Systems, Inc.
1570 Sabovich Street
Mojave , CA 93501-1681
(888) 488-8455

Principal Investigator (Name, E-mail, Mail Address, City/State/Zip, Phone)
Matthew Kuhns
1570 Sabovich Street Mojave, CA 93501 - 1681
(216) 308-6111

Business Official (Name, E-mail, Mail Address, City/State/Zip, Phone)
Sean Mahoney
1570 Sabovich Street Mojave, CA 93501 - 1681
(888) 488-8455
Estimated Technology Readiness Level (TRL) :
Begin: 2
End: 4
Technical Abstract

This work answers the questions and needs of Focus Area 21 Subtopic Z9.01 for small launch vehicle technologies by providing affordable launch architecture, as propulsion systems are the highest cost subsystem for rocket development and PermiAM will enable a large savings for main propulsion system engine development. Part of the work performed in this SBIR will help in determine the potential savings for future engine development programs, currently projected at 10x for injector build cost savings which require face cooling. PermiAM will enable increased design simplicity for AM injectors and reduced development costs through improved face cooling and improved combustion stability. A full scale proof of concept ground test will be demonstrated by the end of Phase II, with the subscale demonstration during Phase I to meet the subtopic requirements.

Potential NASA Applications

PermiAM material is aligned with NASA Technology Roadmap needs TA1.2, TA2.1, and TA12. Masten is currently focusing on the propulsion elements of PermiAM with direct applicability to small satellite launch vehicles, upper stage engines, and planetary landers.  For SLS, the RS-25 and RL10 use a coaxial injector with Rigimesh face. As AM build volumes increase it will be possible to replace the expensive and complex rigimesh injector with an AM version to lower the cost of heavy lift space access.

Potential Non-NASA Applications

For aviation it may be used to improve the performance and reliability of commercial jet engines. Current jet engine combustion chamber designs use bypass air and baffles to keep instabilities under control and prevent the walls from overheating.  PermiAM would allow the more even application of cooling air, better boundary layer performance, and reduce instabilities. Masten would also explore markets in rocketry and is open to license PermiAM to other rocket engine manufacturers.

Form Generated on 05/25/2018 12:03:16