NASA SBIR 2018-I Solicitation

Proposal Summary

 18-1- S1.07-1216
 In Situ Instruments/Technologies for Planetary Science
 In-Situ Electrospray Capture of Organic Bearing Particulates from Comets and Celestial Bodies
SMALL BUSINESS CONCERN (Firm Name, Mail Address, City/State/Zip, Phone)
Connecticut Analytical Corporation
696 Amity Road
Bethany , CT 06524-3006
(203) 393-9666

Principal Investigator (Name, E-mail, Mail Address, City/State/Zip, Phone)
Joseph Bango
696 Amity Road Bethany, CT 06524 - 3006
(203) 393-9666

Business Official (Name, E-mail, Mail Address, City/State/Zip, Phone)
Joseph Bango
696 Amity Road Bethany, CT 06524 - 3006
(203) 393-9666
Estimated Technology Readiness Level (TRL) :
Begin: 2
End: 4
Technical Abstract

NASA has need for technologies that can enable sampling from asteroids and from depth in a comet nucleus, improved in-situ analysis of comets. It has been identified that there is also a requirement for improved dust environment measurements & particle analysis, small body resource identification, and/or quantification of potential small body resources (e.g., oxygen, water and other volatiles, hydrated minerals, carbon compounds, fuels, etc.). We propose to leverage past observations of the ability of electrospray ionization to capture and concentrate polar or polarizable trace species without damage, and combine that knowledge with recent discoveries in developing a hyper velocity ice-gun for NASA studies aimed at ice grain capture simulations. The phase I effort will focus on using the ice gun we created under prior NASA support, and add a novel electrospray cross-current element that creates a soft charging plume across a series of discrete deceleration aerogel plates that we believe will enable in-situ organic analysis capability previously unattainable on board a spacecraft using existing NASA mass spectrometer hardware.

Potential NASA Applications

The applications of the proposed technology for NASA include the means to employ MS to potentially non-destructively analyze organic trace species in ice grains traveling at hyper velocities of 5km/sec and above, simplifys the orbital mechanics required for sample interception.. The long flight time back to Earth results in significant discovery delays. With the proposed technology, NASA could perform in-situ organic analysis of incident ice grains in near real-time..

Potential Non-NASA Applications

For Non-NASA applications, the technology being offered in this proposal include the potential for new methods of ambient pathogen capture and soft ionization for mass spectrometric analysis. In addition, other applications may include non-organic polar molecule charging suitable for thin layer deposition, chip fabrication, and other semiconductor uses.

Form Generated on 05/25/2018 11:38:33