Through the proposed SBIR program, NanoSonic will provide NASA with next-generation, polymer derived yttrium silicate ceramic matrix composites (CMC) helically wound and reactively bonded to high temperature titanium alloy and carbon / carbon (C/C) substrates. NanoSonic’s CMC’s will consist of filament wound silicon carbide fibers embedded within a polymer derived yttrium silicate host matrix that has demonstrated thermo-oxidative durability in excess of 2,000 oC. NanoSonic’s filament winding CMC manufacturing process will have immediate, cost-effective scalability enabling integration within reusable, multifunctional hot structure technologies for atmospheric entry vehicles including leading edge, fuselage, and tank structures. NanoSonic is currently developing lightweight, high temperature composite wrapped gun tubes and will leverage this expertise to produce game-changing filament wound CMC’s with broad applicability in future NASA hot structure systems that are low-cost, lightweight, damage tolerant, and reusable. In support of a rapid Phase III transition, NanoSonic has generated significant defense prime interest in the proposed filament wound, polymer derived CMC technology and has an established pilot scale HybridSil manufacturing infrastructure that may transition down-selected resins to 55-gallon batch production quantities.
NanoSonic’s filament wound, polymer derived CMC’s will provide a game-changing reusable, lightweight, and damage tolerant hot structure technology to NASA and aerospace engineers for next generation atmospheric entry vehicles. The proposed CMC materials will serve as an enabling technology for reusability between atmospheric entry missions and have near-term integration pathways within primary load-carrying aeroshell structures, control surfaces, and propulsion system components.
Secondary non-NASA applications will include use within a broad spectrum of commercial and defense aerospace propulsion systems. By providing unprecedented combinations of manufacturing ease, high temperature durability, damage tolerance and multi-mission reusability, NanoSonic envisions considerable post applications for its polymer derived yttrium silicate CMC technology during Phase II and III efforts with its aerospace development partners.