NASA SBIR 2016 Solicitation

FORM B - PROPOSAL SUMMARY


PROPOSAL NUMBER: 16-2 H2.04-8454
PHASE 1 CONTRACT NUMBER: NNX16CJ37P
SUBTOPIC TITLE: Cryogenic Fluid Management for In-Space Transportation
PROPOSAL TITLE: Lightweight, High-Flow, Low Connection-Force, In-Space Cryogenic Propellant Coupling

SMALL BUSINESS CONCERN (Firm Name, Mail Address, City/State/Zip, Phone)
Altius Space Machines, Inc.
3001 Industrial Lane, Unit #5
Broomfield, CO 80020 - 7153
(303) 438-7110

PRINCIPAL INVESTIGATOR/PROJECT MANAGER (Name, E-mail, Mail Address, City/State/Zip, Phone)
Jonathan Andrew Goff
jongoff@altius-space.com
3001 Industrial Lane, Unit #5
Broomfield, CO 80020 - 7153
(801) 362-2310

CORPORATE/BUSINESS OFFICIAL (Name, E-mail, Mail Address, City/State/Zip, Phone)
Jonathan Andrew Goff
jongoff@altius-space.com
3001 Industrial Lane, Unit #5
Broomfield, CO 80020 - 7153
(801) 362-2310

Estimated Technology Readiness Level (TRL) at beginning and end of contract:
Begin: 3
End: 6

Technology Available (TAV) Subtopics
Cryogenic Fluid Management for In-Space Transportation is a Technology Available (TAV) subtopic that includes NASA Intellectual Property (IP). Do you plan to use the NASA IP under the award?
No

TECHNICAL ABSTRACT (Limit 2000 characters, approximately 200 words)
Three of the key abilities needed for making future NASA and commercial launch and in-space transportation systems more affordable and capable are: a) the ability to "live off of the land" via in-situ resource utilization (ISRU), b) the ability to reuse in-space transportation hardware, and c) the ability to leverage continuing advancements in lower-cost earth-to-orbit transportation. All of these abilities require the ability to transfer large quantities of cryogenic liquids (Oxygen, Hydrogen, and Methane) between tanks on separate vehicles. While all cryogenic rocket stages have to have a propellant fill/drain coupling for loading propellant on the ground, existing designs are not capable of in-space refuelability. A dual-purpose coupler that could be used for both ground fill/drain and for in-space refueling would be extremely valuable.In this proposed SBIR Phase II research effort, Altius Space Machines proposes continuing the development of just such a dual-purpose, lightweight, high-flow cryogenic propellant coupling to enable both ground fill/drain and in-space refueling. This coupling incorporates an innovative new cryogenic sealing architecture to enable a coupling with very low insertion/extraction forces, for manual, robotic, and astronaut-connected cryogenic propellant transfer operations. In Phase I, Altius demonstrated the innovative new cryogenic sealing architecture, and performed insertion/extraction and leak tests, demonstrating significant improvements over traditional spring-energized polymer seals, raising the TRL from 2 to 3 at the end of Phase I. In Phase II Altius will continue refinement of the cryogenic sealing architecture, and will design, fabricate, and test a family of couplers based on this architecture, and focused on an industry-provided launch vehicle application. Testing of the ground and in-space couplers during Phase II will raise the system TRL to 6, paving the way for Post-Phase II flight demonstration (yielding TRL 9).

POTENTIAL NASA COMMERCIAL APPLICATIONS (Limit 1500 characters, approximately 150 words)
Potential NASA applications include: 1- An integrated T-0 fill coupling for EUS that enables in-space refueling with the same coupling. This would enable refueling of the EUS upper stage in LEO or other in-space locations, enabling stage reuse, and/or launch of much larger payloads to deep space trajectories. 2- Fueling of Martian or Lunar Ascent Vehicles or future fully-reusable Mars or Lunar landing vehicles from ISRU production facilities. 3- Distributed launch for very high-energy robotic science missions.

POTENTIAL NON-NASA COMMERCIAL APPLICATIONS (Limit 1500 characters, approximately 150 words)
Potential Non-NASA applications include: 1- A combined T-0 coupling/in-space cryogenic transfer coupling that can be integrated into future upper stage designs, such as the planned ULA ACES or New Glenn cryogenic upper stages. 2- In-flight topoff couplings for air-launched liquid-propellant launch vehicles. 3- Refueling of commercial cryogenic stages in space for distributed lift missions, enabling direct insertion to GEO, or high energy earth departures for science missions. 4- Other terrestrial applications that could benefit from a low-connection force cryogenic coupling, such as automated LH2 fueling for fuel-cell cars. 5- The innovative cryogenic sealing architecture also has elements that could potentially be extrapolated to low insertion force, resettably-self-fusing high-power electrical connectors.

TECHNOLOGY TAXONOMY MAPPING (NASA's technology taxonomy has been developed by the SBIR-STTR program to disseminate awareness of proposed and awarded R/R&D in the agency. It is a listing of over 100 technologies, sorted into broad categories, of interest to NASA.)
Cryogenic/Fluid Systems
Fasteners/Decouplers
Fuels/Propellants
Pressure & Vacuum Systems
Robotics (see also Control & Monitoring; Sensors)
Tools/EVA Tools

Form Generated on 03-07-17 15:43