NASA SBIR 2016 Solicitation

FORM B - PROPOSAL SUMMARY


PROPOSAL NUMBER: 16-1 S4.01-8277
SUBTOPIC TITLE: Planetary Entry, Descent and Landing and Small Body Proximity Operation Technology
PROPOSAL TITLE: Ultra Compact Laser for 3D Imaging LIDAR

SMALL BUSINESS CONCERN (Firm Name, Mail Address, City/State/Zip, Phone)
Q-Peak, Inc.
135 South Road
Bedford, MA 01730 - 2307
(781) 275-9535

PRINCIPAL INVESTIGATOR/PROJECT MANAGER (Name, E-mail, Mail Address, City/State/Zip, Phone)
Dr. Bhabana Pati
pati@qpeak.com
135 South Road
Bedford, MA 01730 - 2307
(781) 275-9535 Extension :1811

CORPORATE/BUSINESS OFFICIAL (Name, E-mail, Mail Address, City/State/Zip, Phone)
Dr. David Green
green@qpeak.com
135 South Road
Bedford, MA 01730 - 2307
(978) 738-8146

Estimated Technology Readiness Level (TRL) at beginning and end of contract:
Begin: 4
End: 5

Technology Available (TAV) Subtopics
Planetary Entry, Descent and Landing and Small Body Proximity Operation Technology is a Technology Available (TAV) subtopic that includes NASA Intellectual Property (IP). Do you plan to use the NASA IP under the award?
No

TECHNICAL ABSTRACT (Limit 2000 characters, approximately 200 words)
Missions to Solar System bodies must meet increasingly ambitious objectives requiring highly reliable capabilities in ranging and mapping for soft and precision landing to avoid hazardous sites. A compact and light weight LiDAR instrument is needed for topography mapping, position sensing, laser altimetry, and autonomous rendezvous of satellites. Missions to small bodies such as asteroids, comets, and moons require precision rendezvous and accurate identification of landing or sampling sites. Precision range data significantly improves spacecraft control in close-approach and landing scenarios. Range data is most critical in the final descent phase where the spacecraft is within a few kilometers of the target surface. These missions require improved precision from previously flown lidar technologies as well as significant reductions in size, weight, and power (SWaP) given the resource-constrained class of missions likely to utilize this capability. Q-Peak, in partnership with Sigma Space Corp., is proposing a low-SWaP laser integrated into a compact laser LiDAR instrument that can achieve the desired ranging accuracy and precision with minimum resource from spacecraft bus.
In Phase I, Q-Peak proposes the development of an ultra-compact, passively Q-switched laser, < 4 cm3 in volume that will produce > 0.1 mJ pulse energies and < 2 ns-duration pulses at 523 nm at pulse repetition rates of 10-30 kHz. This laser will be specifically designed for integration and testing in the newly developed LiDAR instrument at Sigma Space.
In Phase II, Q-Peak will bond the passive Q-switch to the laser gain medium to make it monolithic and essentially alignment free. We will harden the laser and integrate it into the LiDAR instrument to advance the TRL level by subjecting them to a space-like environment.

POTENTIAL NASA COMMERCIAL APPLICATIONS (Limit 1500 characters, approximately 150 words)
NASA remote sensing and LiDAR applications require compact, efficient, reliable, moderate-energy, nanosecond-pulsed lasers. These missions require improved and precision technology from previously flown LiDAR technologies as well as much reduced size, weight, and power (SWaP) given the resource-constrained class of missions likely to use this capability. Missions to solar system bodies must meet increasingly ambitious objectives requiring highly reliable soft and precision landing, hazard avoidance, topography mapping and autonomous rendezvous to other satellites etc. Robotic missions to the Moon and Mars demand landing at pre-designated sites of high scientific value near hazardous terrain features, such as escarpments, craters, slopes, and rocks.
Given the high sensitivity of launch requirements to SWaP considerations and to reliability, we feel that the proposed laser source is uniquely positioned for LiDAR remote sensing and autonomous landing based missions. Other NASA mission profiles or applications that would benefit from generically small, light- weight, low power laser sources would be equally well served.

POTENTIAL NON-NASA COMMERCIAL APPLICATIONS (Limit 1500 characters, approximately 150 words)
An ultra-compact laser source can be used at 1 or 0.5micron wavelength for LiDAR applications to map and image objects; a narrow laser-beam can map physical features with very high resolution. It can target a wide range of materials, including non-metallic objects, rocks, rain, chemical compounds, aerosols, clouds, and even single molecules. 0.5mm wavelength penetrates water easily and is useful for bathymetry measurements in shallow water. The proposed laser can be used in the Automotive Safety and Navigation, Geography, Law Enforcement, Meteorology, Mining, Robotics, and Wind Farm markets.
Military lasers have reached size and energy criteria but always at the cost of poor beam quality and consequent difficulties in atmospheric propagation for their intended applications. Q-Peak's advantage would be in having developed an ultra-compact, simple, and rugged technology for generation of single mode laser pulses in the green, near-IR, or eyesafe regions. This laser device will be much better suited for fieldable systems than present products with respect to both SWaP and mode profile.
When converted to eyesafe wavelength present Department of Defense procurement of eyesafe rangefinder exceeds 2500 units per annum with a constant need to advance the state of the art and reduce soldier carry-weight and workload. The laser architecture proposed here would have great promise in fulfilling an Urgent Needs Requirement for all branches of the DOD interested in precision targeting.

TECHNOLOGY TAXONOMY MAPPING (NASA's technology taxonomy has been developed by the SBIR-STTR program to disseminate awareness of proposed and awarded R/R&D in the agency. It is a listing of over 100 technologies, sorted into broad categories, of interest to NASA.)
3D Imaging
Analytical Instruments (Solid, Liquid, Gas, Plasma, Energy; see also Sensors)
Autonomous Control (see also Control & Monitoring)
Entry, Descent, & Landing (see also Planetary Navigation, Tracking, & Telemetry)
Image Analysis
Lasers (Ladar/Lidar)
Lasers (Measuring/Sensing)
Navigation & Guidance

Form Generated on 04-26-16 15:14