NASA SBIR 2012 Solicitation


PROPOSAL NUMBER: 12-2 H6.03-9331
SUBTOPIC TITLE: Human-Robotic Systems - Manipulation Subsystem
PROPOSAL TITLE: NanoDrill: 1 Actuator Core Acquisition System

SMALL BUSINESS CONCERN (Firm Name, Mail Address, City/State/Zip, Phone)
Honeybee Robotics, Ltd.
460 West 34th Street
New York, NY 10001 - 2320
(212) 966-0661

PRINCIPAL INVESTIGATOR/PROJECT MANAGER (Name, E-mail, Mail Address, City/State/Zip, Phone)
Kris Zacny
398 West Washington Blvd.
Pasadena, CA 91103 - 2000
(510) 207-4555

CORPORATE/BUSINESS OFFICIAL (Name, E-mail, Mail Address, City/State/Zip, Phone)
Jack Craft
460 West 34th Street
New York, NY 10001 - 2320
(646) 459-7835

Estimated Technology Readiness Level (TRL) at beginning and end of contract:
Begin: 4
End: 6

Technology Available (TAV) Subtopics
Human-Robotic Systems - Manipulation Subsystem is a Technology Available (TAV) subtopic that includes NASA Intellectual Property (IP). Do you plan to use the NASA IP under the award?

TECHNICAL ABSTRACT (Limit 2000 characters, approximately 200 words)
We propose to design, build, and test a sample acquisition drill weighing less than 1 kg. The drill uses a novel method of core or powder acquisition, and is suitable for both use by both robotic platforms and astronauts. The core acquisition bit can be used for either a rock core, icy-soil or loose regolith acquisition. The continued development of robust sample acquisition and handling tools is of critical importance to future robotic and human missions to Mars, the Moon, Asteroids, and other planetary bodies. For these missions, consolidated or unconsolidated core samples (as opposed to, say, scooped regolith or collected drill cuttings) are of particular interest. We will conduct testing in the laboratory and in the field to demonstrate the drill's effectiveness both in relevant environments, in relevant operational scenarios.

POTENTIAL NASA COMMERCIAL APPLICATIONS (Limit 1500 characters, approximately 150 words)
Future robotic astrobiology and geology missions such as Mars Sample Return, Venus In Situ Explorer, Comet Sample Return, and South Pole Aitken Basin Sample Return missions will benefit greatly from the ability to produce and capture rock and regolith cores, using a compact, low mass, low power device, and hermetically seal the samples in dedicated containers.
A system utilizing a surface drill and a suite of bits for different applications could be deployed during lunar and asteroid sortie missions by astronauts (i.e., hand held coring drill) since it is more manageable to bring small cores back as opposed to large rocks.

POTENTIAL NON-NASA COMMERCIAL APPLICATIONS (Limit 1500 characters, approximately 150 words)
Scientists often use small drills to acquire core samples for the study of everything from geological classification to ocean drilling and surveying. Traditionally, petroleum engineers will use large cores to extract information about boundaries between sandstone, limestone, and shale. This process is time consuming so smaller cores are sometimes taken. This method of sampling is called sidewall coring and provides more information to the petroleum engineer than simply logged data. Scientists studying earthquake mechanics could also benefit in a similar fashion. Automation of this process would save time and money; enabling the science goals of the research with reduced schedule and budget risk/impact. The arm-deployed coring tool also has applications in the study of terrestrial biology, such as coring into rocks in the Arctic and Antarctic, among other desirable locations.

TECHNOLOGY TAXONOMY MAPPING (NASA's technology taxonomy has been developed by the SBIR-STTR program to disseminate awareness of proposed and awarded R/R&D in the agency. It is a listing of over 100 technologies, sorted into broad categories, of interest to NASA.)
Machines/Mechanical Subsystems
Man-Machine Interaction
Robotics (see also Control & Monitoring; Sensors)
Tools/EVA Tools

Form Generated on 03-04-14 13:38