NASA SBIR 2012 Solicitation

FORM B - PROPOSAL SUMMARY


PROPOSAL NUMBER: 12-2 A3.07-8351
PHASE 1 CONTRACT NUMBER: NNX13CL56P
SUBTOPIC TITLE: Rotorcraft
PROPOSAL TITLE: Fast Responding Pressure-Sensitive Paint for Large-Scale Wind Tunnel Testing

SMALL BUSINESS CONCERN (Firm Name, Mail Address, City/State/Zip, Phone)
Innovative Scientific Solutions, Inc.
2766 Indian Ripple Road
Dayton, OH 45440 - 3638
(937) 429-4980

PRINCIPAL INVESTIGATOR/PROJECT MANAGER (Name, E-mail, Mail Address, City/State/Zip, Phone)
Jim Crafton
jwcrafton@innssi.com
2766 Indian Ripple Road
Dayton, OH 45440 - 3638
(937) 630-3012

CORPORATE/BUSINESS OFFICIAL (Name, E-mail, Mail Address, City/State/Zip, Phone)
Jim Crafton
jwcrafton@innssi.com
7610 McEwen Road
Dayton, OH 45459 - 3908
(937) 630-3012 Extension :107

Estimated Technology Readiness Level (TRL) at beginning and end of contract:
Begin: 6
End: 8

Technology Available (TAV) Subtopics
Rotorcraft is a Technology Available (TAV) subtopic that includes NASA Intellectual Property (IP). Do you plan to use the NASA IP under the award?
No

TECHNICAL ABSTRACT (Limit 2000 characters, approximately 200 words)
The proposed work focuses on implementing fast-response pressure-sensitive paint for measurements of unsteady pressure in rotorcraft applications. Significant rotorcraft problems such as dynamic stall, rotor blade loads in forward flight, and blade-vortex interaction all have significant unsteady pressure oscillations that must be resolved in order to understand the underlying physics. Installation of pressure transducers is difficult and expensive on rotorcraft models, and the resulting data has limited spatial resolution. Application of a fast-responding pressure-sensitive paint should provide unsteady surface pressure distributed over the blade surface. Fast PSP measurements have been demonstrated at NASA Langley on a 2-meter rotor model in hover and in forward flight by the ISSI/OSU team using two single camera systems. More recently, measurements were conducted in forward flight using multiple cameras and lasers at two azimuthal positions. We propose expanding this system for production testing. During Phase I, a lens controller + pan/tilt stages with Ethernet control and presets was developed. This device will be used to control the field of view of the system remotely. Mitigation of motion blur at the tip was demonstrated using a galvanic mirror. A temperature measurement capability using TSP was added to the system to allow temperature corrections to be applied to the PSP data. Fast efficient data processing software that included automatic image registration and scripting of repetitive operations was investigated to speed up data processing. These new tools and software will be integrated into the data acquisition package and data processing package to improve accuracy and productivity during testing.

POTENTIAL NASA COMMERCIAL APPLICATIONS (Limit 1500 characters, approximately 150 words)
There is considerable interest in measurements of unsteady pressure for evaluation of computational models and study of flow physics on hypersonic inlets, compressors, aeroelasticity, and rotorcraft aerodynamics. This system will provide advancement of the state-of-the-art in this field as the proposed research will develop a system for the measurement of continuous distributions unsteady pressure that require no physical modifications to the model and produces data with high spatial resolution. This technology could be deployed to wind tunnels at Ames, Glenn, and Langley for testing on a variety of programs that have need of unsteady pressure measurements. Specific applications include Rotorcraft Aerodynamics, Open Rotor, and Supersonic Inlets.

POTENTIAL NON-NASA COMMERCIAL APPLICATIONS (Limit 1500 characters, approximately 150 words)
There is considerable interest in measurements of unsteady pressure for evaluation of computational models and study of flow physics on hypersonic inlets, compressors, aeroelasticity, and rotorcraft aerodynamics. This system will provide advancement of the state-of-the-art in this field as the proposed research will develop a system for the measurement of continuous distributions unsteady pressure that requires no physical modifications to the model and produces data with high spatial resolution. ISSI has sold several production PSP systems world-wide. There is significant interest among these customers in fast responding PSP. ISSI is currently involved in discussions with several commercial aircraft manufactures regarding the potential of a fast responding PSP system for flight testing. Development of this system for wind tunnel testing is seen as a first step in this process.

TECHNOLOGY TAXONOMY MAPPING (NASA's technology taxonomy has been developed by the SBIR-STTR program to disseminate awareness of proposed and awarded R/R&D in the agency. It is a listing of over 100 technologies, sorted into broad categories, of interest to NASA.)
Acoustic/Vibration
Aerodynamics
Image Processing
Pressure/Vacuum

Form Generated on 03-04-14 13:38