NASA SBIR 2011 Solicitation

FORM B - PROPOSAL SUMMARY


PROPOSAL NUMBER: 11-1 X6.02-8262
SUBTOPIC TITLE: Radiation Hardened/Tolerant and Low Temperature Electronics and Processors
PROPOSAL TITLE: Radiation Hardened Nanobridge based Non-volatile Memory for Space Applications

SMALL BUSINESS CONCERN (Firm Name, Mail Address, City/State/Zip, Phone)
Nanosonic, Inc.
158 Wheatland Drive
Pembroke, VA 24136 - 3645
(540) 626-6266

PRINCIPAL INVESTIGATOR/PROJECT MANAGER (Name, E-mail, Mail Address, City/State/Zip, Phone)
Yuhong Kang
ekang@nanosonic.com
158 Wheatland Drive
Pembroke, VA 24136 - 3645
(540) 626-6266

Estimated Technology Readiness Level (TRL) at beginning and end of contract:
Begin: 3
End: 5

TECHNICAL ABSTRACT (Limit 2000 characters, approximately 200 words)
This NASA Phase I SBIR program would develop and demonstrate radiation hardened nanobridge based non-volatile memory (NVM) for space applications. Specifically, we would combine advances in the resistive memory materials, including solid electrolytes, metal oxides, and metal oxide composites, with atomic layer deposition (ALD) and interference lithography patterning (ILP) techniques, to realize the radiation hardened NVM devices and arrays with high reliability. NanoSonic has demonstrated a nanobridge based resistive memory with on-off ratios of 106, device power consumption of 10-5 Watts and switching speeds of 100ns. We have also demonstrated ILP techniques for the patterning of nanostructured 2D arrays and 3D structures with spatial resolution on the order of tens of nm. During the program, we will first investigate the responsible mechanisms for radiation hardened nanobridge based resistive memories. Based on this study, the candidate metal electrode and dielectric materials will be evaluated and selected for optimal performance for radiation harden application. NanoSonic will fabricated arrayed devices with ultradense crossbar latches structure, using radiation hardened metal oxides such as TiO2, SiO2, Ta2O5, especially composite TaSiO to validate our design rules for radiation hardened memories. The atomic layer deposition (ALD), e-beam evaporation, sputtering and will be used to achieve the targeted device performance. During Phase I, memory device parameters namely on–off ratio, on-state current, switching time, retention time, cycling endurance, power consumption and rectification will be investigated using extensive facilities available in NanoSonic and Virginia Tech. NanoSonic will conduct pre, post and in situ radiation characterization of such devices at Colorado State University and Texas A&M University.

POTENTIAL NASA COMMERCIAL APPLICATIONS (Limit 1500 characters, approximately 150 words)
The proposed radiation hardened nanobridge based resistive memory is critical for electronics in space. They can be fashioned into non-volatile memory, which would allow greater data density than hard drives with access times potentially similar to DRAM (Dynamic Random Access Memory). A broad band of applications of the proposed devices also include analog circuits, neuromorphic computing, programmable logic and signal processing. NanoSonic's research in the nanobridge based resistive device field has shown promise in producing NVM devices of low power consumption, high density and high performance.

POTENTIAL NON-NASA COMMERCIAL APPLICATIONS (Limit 1500 characters, approximately 150 words)
The Non-NASA applications of our devices may include non-volatile memory, analog circuits, programmable logic, signal processing, neural networks, and control systems. There are also significant opportunities at the low end of the market, in devices such as RFID, smart cards, and flexible electronics. Here the prime criterion is cost while the minimum requirements must be met, relating to access time, retention time and endurance. NanoSonic would first target of the market of NVM, analog circuits, neuromorphic computing systems and flexible electronics, and then pursue the high density data storage market when the technology is ready.

TECHNOLOGY TAXONOMY MAPPING (NASA's technology taxonomy has been developed by the SBIR-STTR program to disseminate awareness of proposed and awarded R/R&D in the agency. It is a listing of over 100 technologies, sorted into broad categories, of interest to NASA.)
Circuits (including ICs; for specific applications, see e.g., Communications, Networking & Signal Transport; Control & Monitoring, Sensors)
Materials (Insulator, Semiconductor, Substrate)
Nanomaterials


Form Generated on 11-22-11 13:43