NASA SBIR 2008 Solicitation


PROPOSAL NUMBER: 08-1 X4.06-9326
SUBTOPIC TITLE: Composite Structures - Manufacturing
PROPOSAL TITLE: Advanced Composite Thrust Chambers for the Altair Lunar Lander

SMALL BUSINESS CONCERN (Firm Name, Mail Address, City/State/Zip, Phone)
Plasma Processes, Inc.
4914 Moores Mill Road
Huntsville, AL 35811 - 1558
(256) 851-7653

PRINCIPAL INVESTIGATOR/PROJECT MANAGER (Name, E-mail, Mail Address, City/State/Zip, Phone)
John Scott O'Dell
4914 Moores Mill Road
Huntsville, AL 35811 - 1558
(256) 851-7653

Expected Technology Readiness Level (TRL) upon completion of contract: 1 to 2

TECHNICAL ABSTRACT (Limit 2000 characters, approximately 200 words)
Radiation-cooled, bipropellant thrusters are being considered for the Ascent Module main engine of the Altair Lunar Lander. Currently, iridium-lined rhenium combustion chambers are the state-of-the-art for radiatively cooled thrusters. To increase the performance of radiation-cooled engines, improved chamber materials are being developed that will allow higher operating temperatures, better resistance to oxidation, and reduce mass. In an effort to increase performance, hafnium oxide thermal barrier coatings and improved iridium liners have been developed, and hot-fire tests of rhenium chambers with these improvements have shown higher operating temperatures, i.e., >200oC increase, are possible. To reduce engine mass, recent efforts have focused on the development of carbon-carbon composites. Replacement of a rhenium structural wall with carbon-carbon could result in a mass savings of >600%. During this effort, an innovative composite thrust chamber will be developed that will incorporate advanced hafnium oxide and iridium liner techniques as well as replacing the expensive, high density rhenium with a low mass carbon-carbon composite. As a result of this investigation, an advanced composite thrust chamber with improved performance capability and reduced mass will be produced. During Phase II, the fabrication methods will be optimized and a full-size Ascent Module chamber will be produced and hot-fire tested.

POTENTIAL NASA COMMERCIAL APPLICATIONS (Limit 1500 characters, approximately 150 words)
PPI's targeted NASA application is for the Altair Ascent Module main engine. Other NASA applications include in-space propulsion components for apogee insertion, attitude control, orbit maintenance, repositioning of satellites/spacecraft, reaction control systems, and descent/ascent engines, nuclear power/propulsion, oxygen generators, and lunar regolith processing.

POTENTIAL NON-NASA COMMERCIAL APPLICATIONS (Limit 1500 characters, approximately 150 words)
Both government and commercial entities in the following sectors use advanced high-temperature materials for the following applications: coatings, defense, material R&D, nuclear power, aerospace, propulsion, automotive, electronics, crystal growth, and medical. PPI's targeted commercial applications include net-shape fabrication of refractory and platinum group metals for rocket nozzles, crucibles, heat pipes, and propulsion subcomponents; and advanced coating systems for x-ray targets, sputtering targets, turbines, rocket engines, wear and thermal/electrical insulation.

NASA's technology taxonomy has been developed by the SBIR-STTR program to disseminate awareness of proposed and awarded R/R&D in the agency. It is a listing of over 100 technologies, sorted into broad categories, of interest to NASA.

Micro Thrusters
Multifunctional/Smart Materials
Propellant Storage

Form Generated on 11-24-08 11:56