NASA SBIR 2005 Solicitation


SUBTOPIC TITLE:Heat Rejection Technologies for Nuclear Systems
PROPOSAL TITLE:Robust Engineered Thermal Control Material Systems for Crew Exploration Vehicle (CEV) and Prometheus Needs

SMALL BUSINESS CONCERN (Firm Name, Mail Address, City/State/Zip, Phone)
Applied Material Systems Engineering, Inc.(AMSENG)
2309 Pennsbury Ct.
Schaumburg, IL 60194-3884
(630) 372-9650

PRINCIPAL INVESTIGATOR/PROJECT MANAGER (Name, E-mail, Mail Address, City/State/Zip, Phone)
Mukund   Deshpande
2309 Pennsbury Ct.
Schaumburg, IL  60194-3884
(630) 372-9650

TECHNICAL ABSTRACT (Limit 2000 characters, approximately 200 words)
This innovative SBIR Phase II proposal plans to develop new multifunctional high temperature capable TCMS technologies based on the identified needs for the thermal control and ESD functions of the exploration mission hardware and also for the heat rejection system. These efforts can also serve uniquely the Crew Exploration Vehicle radiator systems needs. The TCMS for the radiators of the both CEV and exploration missions need to operate at higher elevated temperatures and provide the space environment stable low ratio of (solar absorptance/emittance) performance in high radiation orbits involving intense UV, electrons and protons along with stable charge mitigation. The CEV application also needs it to withstand typical launch environments. According to the phase I findings, none of the state-of-an-art material systems that are currently in use are designed for the needs of the space environment stable operation at elevated temperatures, and hence, can not meet the same. The Phase I efforts proved the feasibility and identified the next generation solid state chemistries and processing requirements that can provide the multifunctional space stable performance at higher temperatures and also provided the unique guidance for tailoring the ESD performance when these very large thermal control areas get exposed to very low temperatures. The proposed phase II efforts will continue R&D and scale up the synthesis of the identified candidate engineered passivated pigments and validate its space environment stability with use of recently developed next generation negative CTE passivated additives with abilities to tailor CTE, thermal shock and thermal cycling performance. Thus, these Phase II efforts can provide the next generation "Robust" validated TCMS products that can be exposed to the elevated temperatures (500C) and conducting tasks geared towards putting together plasma spray technology and experience base as applied to TCMS for various exploration missions.

POTENTIAL NASA COMMERCIAL APPLICATIONS (Limit 1500 characters, approximately 150 words)
The suggested and developed new generic solid state chemistries for the high temperature capable TCMS through this SBIR can also benefit the current state-of-the-art TCMS to enhance their multifunctionality & reliability. The use of such in envisioned materials can uniquely and timely help CEV radiator which is also expected to operate at high temperatures. These efforts can also enhance NASA's ability to carry out earth science, and space science missions in all earth orbits and in the planetary orbits as well as in the several sun earth connection study orbits, where the exposure to high temperatures can be one of the main degrading species. The motivation to use the new material technology will be high because of increased survivability in the space environments, along with the increased life due to the designed temperature insensitive degradation. This would translate in the increased durability for these missions. Above all, we shall provide designers with new high temperature capable TCMS options as a tool to build more reliable and survivable hardware for NASA exploration missions. The technology of high temperature survivable TCMS materials is generic and will diffuse itself in many other NASA applications that thrive for the long life due to its increased durability.

POTENTIAL NON-NASA COMMERCIAL APPLICATIONS (Limit 1500 characters, approximately 150 words)
Like NASA, the commercial industry has planned several satellite platforms for the broad band communication activities. The FAA and NASA are also planning commercial space based radars for air traffic control and distant planet observations and robotic exploration and communication. Such radar platforms are also planned by DOD for the battle-field management, and such platform structures are expected to be large and sizable, where charge accumulation can be an over riding concerns along with operation of the platforms at elevated temperatures. These planned candidate radar application assets and their fleets of such integrated space systems may require putting assets in the mid-earth orbits (MEO) for over all optimization and minimization of mission costs. Such mission and fleet designs can be possible and can be economic only if the "robust" material technologies are made available that can perform at high temperatures without failure. Currently no material technology exists that can mitigate synergistic high temperature and space environment induced degradation effects. Many NASA planetary, the commercial and some of the DOD platform hardware devoted to the radar applications are also expected to operate at higher temperatures and thus will significantly benefit form the new validated material systems technology being developed through this phase II SBIR R&D and validation efforts.

NASA's technology taxonomy has been developed by the SBIR-STTR program to disseminate awareness of proposed and awarded R/R&D in the agency. It is a listing of over 100 technologies, sorted into broad categories, of interest to NASA.

Multifunctional/Smart Materials
Nuclear Conversion
Power Management and Distribution
Radiation Shielding Materials
Thermal Insulating Materials

Form Printed on 07-25-06 17:04